

Calhoun: The NPS Institutional Archive DSpace Repository

A computational and experimental study of flush heat sources in liquids

Haukenes, Larry Olaf

Monterey, California. Naval Postgraduate School
http://hdl.handle.net/10945/30645

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

A COMPUTATIONAL AND EXPERIMENTAL STUDY OF FLUSH HEAT SOURCES IN LIQUIDS
by
Larry O. Haukenes
June 1990

Thesis Advisor:
Yogendra Josh
Co-Advisor: Sanjeev Sarthe

Approved for public release; distribution is unlimited.

Unclassified
SECURTTY CLASSIFICATION OF THIS PAGE

19. Asstract (Continue on reverse if necessary and identify by block number)

A numerical investigation of two-dimensional natural convection flow and heat transfer from a substrate-mounted flush heat source immersed in a liquid-filled square enclosure was conducted. The study is relevant to direct liquid-immersion cooling of electronic components. A control volume based finite-difference model that accounts for conduction heat transfer within the substrate and heat source and the coupled natural convection in the fluid was utilized. Numerical predictions were obtained for a wide range of Rayleigh and Prandtl numbers, substrate to fluid and heat source to fluid thermal conductivity ratios and other geometrical parameters that may be encountered in practice. An increase in Rayleigh number lead to more vigorous flow and promoted cooling. No noticeable effect on the nondimensional temperature was observed when changing the Prandtl number from 7 to 100. Little reduction in maximum temperatures was observed when substrate and component to fluid thermal conductivity ratios were increased beyond 10 and 25 , respectively. Component to substrate width ratio change from .25 to .999 resulted in approximately linear decrease in the maximum temperature. A companion experimental study of three-dimensional natural convection transport from a flush mounted array of heat sources in water was also conducted. Computed temperatures compared favorably to appropriate experimental data.

20. Distribution/Avaliabilty of Abstract Xunclassified/unlimated \square same as rpt. \square ditic users	21. ABSTRACT SECURITY Classification Unclassified	
22a. Name of Responsible Indinidual Professor Joshi	22b TEi Prifone (Include Area code) (408) 646-3400	22c. Office Symbol ME/Ji

DD Form 1473, JUN 86

Approved for public release; distribution is unlimited

A Computational and Experimental

 Study of Flush Heat Sources in Liquidsby

Larry Olaf Haukenes Lieutenant, United States Navy
B.S., University of Wisconsin-Eau Claire, 1980

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING and

MECHANICAL ENGINEER
from the
NAVAL POSTGRADUATE SCHOOL

Abstract

A numerical investigation of two-dimensional natural convection flow and heat transfer from a substrate-mounted flush heat source immersed in a liquid-filled square enclosure was conducted. The study is relevant to direct liquid-immersion cooling of electronic components. A control volume based finite-difference model that accounts for conduction heat transfer within the substrate and heat source and the coupled natural convection in the fluid was utilized. Numerical predictions were obtained for a wide range of Rayleigh and Prandtl numbers, substrate to fluid and heat source to fluid thermal conductivity ratios and other geometrical parameters that may be encountered in practice. An increase in Rayleigh number lead to more vigorous flow and promoted cooling. No noticeable effect on the nondimensional temperatures was observed when changing the Prandtl number from 7 to 100 . Little reduction in maximum temperatures was observed when substrate and component to fluid thermal conductivity ratios were increased beyond 10 and 25 , respectively. Component to substrate width ratio change from . 25 to .999 resulted in approximately linear decrease in the maximum temperature. A companion experimental study of three-dimensional natural convection transport from a flush mounted array of heat sources in water was also conducted. Computed temperatures compared favorably to appropriate experimental data.

TABLE OF CONTENTS

I. INTRODUCTION 1
A. STATEMENT OF PROBLEM 1
B. OBJECTIVES. 4
II. NUMERICAL MODEL 7
A. MATHEMATICAL FORMULATION 7
B. METHOD OF SOLUTION 9
III. PARAMETRIC STUDY. 12
A. EFFECT OF Ra 12
B. EFFECT OF Pr 24
C. EFFECT OF SUBSTRATE CONDUCTIVITY RATIO R_{*} 24
D. EFFECT OF COMPONENT CONDUCTIVITY RATIO R ${ }_{c}$ 41
E. EFFECT OF COMPONENT TO SUBSTRATE WIDTH RATIO w / d_{t} 51
IV. EXPERIMENT 61
A. EXPERIMENTAL APPARATUS 61

1. Additions 61
2. Changes 62
B. LIQUID CRYSTAL 63
V. NUMERICAL COMPARISON WITH EXPERIMENT. 73
A. WHAT TO COMPARE ? 73
B. 0.2 WATT NUMERICAL COMPARISON 73
C. HIGHER POWER NUMERICAL COMPARISON 80
D. UPPERLOWER HEATER NUMERICAL EVALUATION 82
VI. CONCLUSIONS 91
VII. RECOMMENDATIONS 93
APPENDIX A USER PORTION OF FINTTE DIFFERENCE PROGRAMS. 94
APPENDIX B CONTOUR PROGRAM 106
APPENDIX C TRAVERSE PROGRAM 116
APPENDIX D TEMPERATURE ACQUISITION PROGRAM. 117
APPENDIX E UNIFORM POWER PROGRAM 119
APPENDIX F UNIFORM DATA REDUCTION PROGRAM 122
APPENDIX G NONUNIFORM POWER PROGRAM. 125
APPENDIX H NONUNIFORM DATA REDUCTION PROGRAM. 128
LIST OF REFERENCES 132
INITIAL DISTRIBUTION LIST 134

NOMENCLATURE

c_{p} specific heat at constant pressure [J/kg-K]
d dimension in Fig. 1 [m]
d_{t} substrate thickness [m]
g gravitational acceleration [$\mathrm{m} / \mathrm{s}^{2}$]
h component height [m]
H enclosure height [m]
$k \quad$ thermal conductivity [$\mathrm{W} / \mathrm{m}-\mathrm{K}$]
$\mathrm{L}_{4} \quad$ dimension in Fig. $1[\mathrm{~m}]$
p pressure [$\mathrm{N} / \mathrm{m}^{2}$]
P non-dimensional pressure, $\mathrm{p} / \mathrm{\rho U} \mathrm{U}_{0}{ }^{2}$
$\operatorname{Pr} \quad$ Prandtl number, $\mu c_{p} / k_{f}$
q non-dimensional heat flux [eq.7]
Q Heat generation rate per unit length [W/m]
P Power to the heater
$\mathbf{R}_{\mathbf{c}} \quad$ protrusion to fluid thermal conductivity ratio, $\mathbf{k}_{\mathbf{c}} \mathbf{k}_{\mathrm{f}}$
$\mathbf{R}_{s} \quad$ substrate to fluid thermal conductivity ratio, $\mathbf{k}_{\mathbf{s}} / \mathbf{k}_{\mathrm{f}}$

S1 non-dimensional counter clockwise contour distance along the component-fluid/component-substrate interface in Table 2
S2 non-dimensional counter clockwise contour distance along the solid-fluid interface in Table 1
S_{b}, S_{t} dimensions in Fig. 1 [m]
$\mathrm{R}_{\mathrm{L}} \quad$ Lead resistance [Ω]
$\mathrm{R}_{\mathrm{P}} \quad$ Precision resistor resistance [Ω]
$t_{c} \quad$ enclosure wall temperature [K]
T non-dimensional temperature, $\left(t-t_{c}\right) /\left(Q / k_{f}\right)$
$u \quad$ vertical velocity component [m / s]
U non-dimensional vertical velocity component, u / U_{0}
$\mathrm{U}_{\mathrm{o}} \quad$ reference velocity, $\left(\mathrm{g} \beta \mathrm{Qh} / \mathrm{k}_{\mathrm{f}}\right)^{1 / 2}[\mathrm{~m} / \mathrm{s}]$
v horizontal velocity component [m / s]
V non-dimensional horizontal velocity component, $\mathrm{v} / \mathrm{U}_{\mathrm{o}}$
$\mathbf{V}_{\mathbf{L}} \quad$ Voltage measured over the leads and heater [Volts]
$\mathrm{V}_{\mathrm{T}} \quad$ Voltage over the precision resistor, leads and heater [Volts]
w component width [m]
x vertical coordinate [m]
X non-dimensional vertical coordinate, \mathbf{x} / h
y horizontal coordinate [m]
Y non-dimensional horizontal coordinate, y / h

Greek Symbols

α fluid thermal diffusivity [m / s]
$\beta \quad$ coefficient of thermal expansion [1/K]
סX non-dimensional vertical distance between grid point and the control volume face
©Y non-dimensional horizontal distance between grid point and the control volume face

p fluid density [$\mathrm{kg} / \mathrm{m}^{3}$]

$\mu \quad$ dynamic viscosity [$\mathrm{kg} / \mathrm{m}-\mathrm{s}$]
$v \quad$ kinematic viscosity [$\mathrm{m}^{2 / \mathrm{s}}$]
$k \quad$ nondimensional conductivity $\left[\mathrm{R} /(\mathrm{RaPr})^{1 / 2}\right]$

Subscripts

c component (chip)
f fluid/iquid
max maximum

- substrate
sur
substrate or component surface

ACKNOWLEDGMENT

I would like to express my thanks to Professor Joshi for his guidance and technical assistance in putting together this research project. I also wish to thank Professor Sathe for his instruction in the use of the finite difference computer program.

I. INTRODUCTION

A. STATEMENT OF PROBLEM

Heat removal from electronic equipment is an area of extensive research and will be more important in the future due to the ever increasing component volumetric heat generation rates. The advantages of liquid cooling have been demonstrated in the thermal control of macroelectronic components such as power transistors and power supplies for almost 40 years. However liquid cooling of microelectronic equipment has only recently gained wide attention due to the need for increased power dissipation, the availability of inert dielectric liquids, and the introduction of immersion cooled supercomputers. Bergles and Bar-Cohen [Ref. 1] and Nakayama [Ref. 2] have described various cooling techniques currently under investigation to meet modern component cooling requirements. Incropera [Ref. 3] discusses convective cooling.

In natural convection the flow is induced by buoyancy forces. The buoyancy force is generated when a body force acts on a fluid in which a density gradient is present. Natural convection cooling has the advantages of simplicity of design, low operating cost due to no outside power requirements and minimum maintenance, absense of noise and high reliability. Also, in the event of a mechanical failure, natural convection may be the only method of cooling available [Ref. 4-5]. Natural convection in liquids results in much higher cooling rates compared to those of air and hence numerous studies have recently been performed on natural
convection from discrete heat sources inside liquid filled enclosures [Ref. 610].

Gaiser [Ref. 6] experimentally investigated natural convection liquid cooling of a three column array of uniformly heat generating simulated electronic components on a flat plate and in a vertical channel by using foil heaters. The channel was made by placing a smooth movable shroud parallel to the high density heater surface. Temperature measurements and flow visualizations at various power levels and channel spacings were made. Experimental correlations relating local heat transfer with shroud wall spacing and foil heater power levels were developed. Flow was laminar for all power levels studied. For the unshrouded case, the flow of coolant over the center column resulted in a weak fluid entrainment from the side columns and in turn enhanced the cooling of the side columns. For the shrouded case, the fluid entrainment by the center column was much greater and had a greater cooling effect on the side columns. For a channel of 3 mm or less, the increased frictional resistance caused a significant increase in the component temperature and the correlations were no longer followed.

Joshi, Willson and Hazard [Ref. 7] conducted an experimental investigation of steady state and transient natural convection from a column of rectangular heated protrusions in a vertical channel in water. Flow visualizations and component surface temperature measurements were carrried out for several power dissipation levels and channel spacings. For the smallest channel spacing, the component surface temperatures increased significantly due to a reduction in fluid velocity.

During transient periods, an initial diffusive transport was observed followed by the evolution of convective effects. No overshoots in component temperatures were observed. Steady transport responses over several component power levels were also examined.

Park and Bergles [Ref. 8] simulated microelectronic circuits with flush mounted and protruding thin foil heaters. Heat transfer coefficients were obtained for various heater heights and widths in water and R-113. The heat transfer coefficient was found to increase with decreasing width, which was attributed to three dimensional boundary layer effects. Protruding heaters were found to have a coefficient about 15 percent above flush mounted heaters. Coefficients for upper flush heaters were found to be less than lower heaters. For protruding heaters, the upper heaters had higher coefficients than the lower heaters.

Bar-Cohen and Schweitzer [Ref. 9] provided an analytical basis for the design and optimization of convective immersion cooling systems. Analytical development and experimental verification of the relations for the natural convection heat transfer coefficients prevailing along the surfaces of immersed, uniformly heated plates in both symmetric and asymmetric configurations were conducted. Milanez and Bergles [Ref. 10] experimentally studied the wake temperature distribution produced by a horizontal line source on a vertical adiabatic surface and compared it to the similarity solution. They also examined the interaction of two heaters. Velocities induced by the lower heater enhanced the heat transfer coefficient at the upper heater, however this effect was offset by the preheating of the fluid by the lower heater. Jaluria [Ref. 11] conducted a
numerical study of heat sources mounted on an adiabatic wall under the influence of natural convection. Sathe and Joshi [Ref. 5] conducted a numerical investigation of natural convection flow and heat transfer arising from a substrate mounted protruding heat source. Their study accounts for conduction heat transfer within the protrusion and substrate and the coupled natural convection in the fluid.

Areas of current concern with the new packaging techniques are stress on the electronic components due to thermal expansion coefficient mismatch. Temperatures throughout the package are needed so thermal stress analysis can be conducted and high stress areas can be located. The complex geometries of the boards and the coupled conduction/convection heat transfer problem lead to intricate heat transfer paths. The difficulty is magnified when the circuit board spacing is small and the flow pattern is populated by numerous non-uniform heat sources. An examination of the heat transfer and fluid flow characteristics of such a system would aid designers in the development of better cooling schemes.

B. OBJECTIVES

This study was performed to determine the effects of changing the various parameters involved in the construction of electronic packages on the heat transfer and to observe the effects of a nonuniform high density grouping of discrete heat sources in a vertical channel for direct liquid natural convection cooling. Gaiser [Ref. 6] describes the high density grouping of heat sources.

The study consisted of two parts. First a computer model was utilized to conduct a two dimensional study to find the effects of various governing parameters on the natural convective heat transfer and fluid flow behaviors for a substrate mounted flush component immersed in a liquid. Then the three dimensional flow over a simulated printed wire circuit board consisting of multiple arrays of flush-mounted heaters was observed experimentally. Results of the computer model were compared to results from past and current experimental studies.

Specific objectives of the numerical parametric study were:

- To determine temperatures and flows throughout and around a simulated direct liquid natural convection cooled flush mounted electronic component.
- To study the effect of various combinations of parameters for an electronic component flush mounted on a substrate.
- To investigate the effect of two component interaction on the heat transfer and flow.

The experimental study had the following objectives:

- To determine the effect of channel spacing on fluid flow and heat transfer.
- To observe the effect of nonuniform powering on heat transfer and fluid flow.
- To observe the surface temperature patterns during uniform and nonuniform heating using liquid crystal.

II. NUMERICAL MODEL

A. MATHEMATICAL FORMULATION

The schematic diagram of the configuration examined is shown in Fig.

1. A flush heat source mounted in a vertical substrate is immersed in a two-dimensional fluid-filled square enclosure of height H. The dark shaded region represents the heat source and the light shaded area the substrate. Uniform volumetric heat generation takes place in the flush mounted heater. The enclosure boundaries are maintained at a constant temperature, $\mathrm{t}_{\mathbf{c}}$. The heater, the substrate and the fluid have constant but different thermophysical properties. Assuming a steady-state, laminar flow with no viscous dissipation and the Boussinesq approximation to be true, the dimensionless governing equations can be written as:

Fluid Region

$$
\begin{align*}
& \frac{\partial U}{\partial X}+\frac{\partial V}{\partial Y}=0 \tag{1}\\
& \frac{\partial\left(U^{2}\right)}{\partial X}+\frac{\partial(U V)}{\partial Y}=(\operatorname{Pr} / R a)^{1 / 2}\left(\frac{\partial^{2} U}{\partial X^{2}}+\frac{\partial^{2} U}{\partial Y^{2}}\right)+T-\frac{\partial P}{\partial X} \tag{2}\\
& \frac{\partial(U V)}{\partial X}+\frac{\partial\left(V^{2}\right)}{\partial Y}=(\operatorname{Pr} / R a)^{1 / 2}\left(\frac{\partial^{2} V}{\partial X^{2}}+\frac{\partial^{2} V}{\partial Y^{2}}\right)-\frac{\partial P}{\partial Y} \tag{3}\\
& \frac{\partial(U T)}{\partial X}+\frac{\partial(V T)}{\partial Y}=(1 / R a P r)^{1 / 2}\left(\frac{\partial^{2} T}{\partial X^{2}}+\frac{\partial^{2} T}{\partial Y^{2}}\right) \tag{4}
\end{align*}
$$

Figure 1. Schematic diagram of configuration for numerical study

Solid Region (heater)
$\frac{\partial^{2} T}{\partial X^{2}}+\frac{\partial^{2} T}{\partial Y^{2}}=\frac{h}{w R_{c}}$

Solid Region (substrate)

$$
\begin{equation*}
\frac{\partial^{2} T}{\partial X^{2}}+\frac{\partial^{2} T}{\partial Y^{2}}=0 \tag{6}
\end{equation*}
$$

where $X=x / h, \quad Y=y / h, \quad U=u / U_{0}, \quad V=v / U_{0}, T=\left(t-t_{c}\right) /\left(Q / k_{f}\right), \quad P=p / \rho U_{0}{ }^{2}$; $U_{0}=\left(g \beta Q h / k_{f}\right)^{1 / 2}, \operatorname{Pr}=\mu c_{p} / k_{f}, \operatorname{Ra}=g \beta Q h^{3} / \alpha k_{f} v, R_{c}=k_{f} / k_{f}$ and $R_{f}=k_{\rho} / k_{f}$.

The boundary conditions constitute isothermal enclosure walls at temperature t_{c} and the no-slip and impermeable wall conditions for the velocity components; i.e $\mathrm{U}=\mathrm{V}=\mathrm{T}=0$ at the enclosure walls. Heat fluxes are appropriately matched at the interfaces of dissimilar materials. The following governing parameters emerge as a result of the nondimensionalized governing equations, boundary and matching conditions: $\mathrm{Ra}, \operatorname{Pr}, R_{c}, R_{s}, S_{b} / h, d / h, L_{t} / h, S_{t} / h$ and w / d_{t}. The definitions of the symbols can be found in the Nomenclature.

B. METHOD OF SOLUTION

The governing equations are discretized using a finite difference scheme wherein the control volumes for the temperature and pressure are staggered from those for the velocities. Power law profiles are used for the spatial variation of the dependent variables to ensure realistic results for a
wide range of the grid Peclet numbers. Interface diffusivities are calculated using a harmonic-mean formulation in order to handle abrupt changes in the material properties. The details of the discretization process can be found in Patankar [Ref. 12].

The discretized equations were solved iteratively using the line-by-line TDMA (Tri-Diagonal Matrix Algorithm) and the SIMPLER procedure as outlined in Ref. 12. It is noted that even though separate equations are written for the fluid and solid regions, the solid region is numerically simulated by letting its viscosity become very large. Thus the same momentum equation is solved throughout the computational domain. Similarly, for the energy equation, heat sources and property values are used implicitly in the control volume formulation wherein mass, momentum and energy balances are incorporated for individual control volumes [Ref. 12].

Test computations were performed on a series of grids ranging from 30×30 to 73×73 control volumes to determine the grid size effects. The values and locations for the maximum temperature and peak velocities did not change appreciably when the grid was refined beyond 40×40 control volumes. Most calculations were performed on a grid size of 50×50. However for $\mathrm{Ra}>10^{6}$ the solution would not converge on a 50×50 grid and it was found that by increasing the control volumes in the area of the suspected high thermal gradient, convergence could be achieved. Therefore for $\mathrm{Ra}=10^{6}$ the number of control volumes was increased to 70x70. Convergence was based on a balance of the rate of energy generated
in the component and the rate of energy leaving the enclosure walls. Convergence was based on the energy balance being better than 1 percent.

The program was run on the Mechanical Engineering VAX station 2000 Cluster and the IBM-370/3033 computer. The greater the number of control volumes the the greater the time to run on each system. Also if Ra was of the order of 10^{6}, it took up to $\mathbf{1 2 0 , 0 0 0}$ iterations for covergence to take place. The relaxation factor for the velocities, temperatures, pressure and buoyant force were adjusted until a proper combination was found that would make the solution converge. After coming up with a proper set of relaxation factors, they could be used for other high Ra solutions and the number of iterations required was reduced. The run times could also be reduced when previously computed solutions were used as an initial guess. The VAX system took approximately 10 times longer to run a program with the same number of iterations and control volumes than the IBM system. However, more VAX stations could be used on a continuous basis which made using the VAX system slightly preferable.

III. PARAMETRIC STUDY

Numerical computations were conducted for various $\mathrm{Ra}, \mathrm{Pr}, \mathbf{R}_{s}$, and $\mathbf{R}_{\mathbf{c}}$ values that would be found in actual cooling applications [Ref. 5]. Ra numbers from 10^{3} to 10^{6} were investigated with the limit of 10^{6} due to the very slow convergence of the computations for Ra greater than 106. The values of $\operatorname{Pr}, R_{\text {m }}$ and R_{c} were varied from 7 to $100,0.1$ to 100 and 1 to 100 respectively. The geometric parameters used in the computations were $S_{b} / h=2, d / h=2, L_{t} / h=2, S_{t} / h=3$, and w / d_{t} varied from 0.25 to 1. A baseline case with $\operatorname{Ra}=10^{5}, \operatorname{Pr}=25, R_{s}=10, R_{c}=25$ and $w / d_{t}=0.5$ was conducted and when a particular parameter was being studied all other parameters were kept the same as in the baseline case. Table 1 shows the breakdown of the cases studied. Appendix A shows the user portion of the finite difference program used to obtain the numerical data. Appendix B contains the contour program used in making the following figures.

A. EAFFECT OF Ra

The temperature contours for Ra=10 to 10^{6} are shown in Figs. 2(a)-(d). These are nearly symmetric with respect to the enclosure vertical centerline for all Ra . The high $\mathbf{R}_{\mathbf{f}}(10)$ value tends to spread the heat out to each side even though the heater is placed on the right side of the substrate. As Ra increases, the extent of thermal stratification increases in the lower portion of the enclosure. All boundary layers get thinner and a larger

Table 1. Baseline parameters (all parameters except the one being studied revert to these) and the range of parameters

Parameter	Baseline value	Range studied
Ra	10^{5}	$10^{3}, 10^{4}, 10^{5}, 10^{6}$
Pr^{2}	25	$7,25,100$
R_{s}	10	$.1,1,10,50,100$
R_{c}	25	$1,25,50,100$
w / d_{t}	.5	$.25, .5, .75, .999$

thermal gradient occurs in the fluid next to the substrate and the enclosure top and sides.

Figures 2(a)-(d) also show changes in the streamline patterns with more vigorous flow with an increase of Ra. The flow travels up on both sides of the package. The flow forms two cells with the right cell being somewhat larger and stronger, due to the direct heater-fluid interaction. Flows are nearly symmetric on the right and left and as Ra is increased the eddy centers move up and toward one another. Also as Ra is increased, the fluid in the lower right portion of the enclosure becomes increasingly stagnant.

The heat loss though each face of the component is shown in Fig. 3. As Ra is increased the percentage of the heat lost directly to the fluid i.e. from the front face, is increased due to the increased convection. As Ra increases the percentage of heat lost from the top and bottom of the enclosure decreases as shown in Fig. 4, and the heat lost to the sides of the enclosure increases. The heat loss through the enclosure bottom is below 5

Figure 2(a). Temperature contours and streamlines for Ra=103

Figure 2(b). Temperature contours and streamlines for $\mathrm{Ra}=10^{4}$

Figure 2(c). Temperature contours and streamlines for $\mathbf{R a}=10^{5}$

Figure 2(d). Temperature contours and streamlines for $\mathrm{Ra}=10^{6}$

Figure 3. Heat loss through component faces for various Ha

Figure 4. Heat loss through enclosure walls for various Ra
percent for all Ra shown but it decreases with an increase in Ra due to increased thermal stratification near the bottom. There is a greater percentage of heat loss through the left wall than the right even though the right wall faces the component and the flow is greater on the right. This is because the left wall is closer to the substrate and heater than the right wall. It is interesting to note that the top wall dissipates almost half the heat generated by the component.

Figure 5 shows the substrate nondimensional surface heat flux (q) which is defined as:

$$
\begin{equation*}
\mathrm{q}=\frac{\left(\mathrm{T}_{\mathrm{s}}-\mathrm{T}_{\mathrm{f}}\right)}{\left(\frac{\delta \mathrm{X}_{\mathrm{f}}}{x_{\mathrm{f}}}+\frac{\delta \mathrm{X}_{\mathrm{f}}}{x_{\mathrm{f}}}\right)} \tag{7}
\end{equation*}
$$

Table 2 describes the values of $S 2$ corresponding to its location on the substrate. Heat fluxes are not defined at the corners. $S 2=0$ at the lower right corner of the substrate and goes counter-clockwise around the solidfluid boundary including the component-fluid boundary. The same general trend for the variation of heat flux with $\mathbf{S} 2$ is seen for all Ra. The heat flux goes through a minumum at $S 2 \approx 0.5$ after which it rapidly reaches its maximum value at $S 2=2$, at the base of the component. The heat flux then decreases going up the component and when the substrate above the component is reached at $\mathbf{S} 2=3$ it decreases even more steeply, going through a minimum at $S 2=4.5$ prior to reaching the top right corner. At the top right corner the heat flux decreases sharply again going over the top substrate face and comes to the minimum heat flux on the substrate at the

Table 2. Ranges of S2 corresponding to different solid-fluid interfaces

Surface no.
in Fig. 1
$\mathbf{X} \quad \mathbf{Y}$
$\mathbf{S 2}$

1	0 to 2	0	0 to 2
2	2 to 3	0	2 to 3
3	3 to 5	0	3 to 5
4	5	0 to -1	5 to 6
5	5 to 0	-1	6 to 11
6	0	-1 to 0	11 to 12

midpoint of the top face at $S 2=5.5$. Reviewing the temperature contours in Figs. 2(a)-(d), this is where the fluid temperature is the hottest next to the substrate. The heat flux on the top face is nearly symmetric. Proceeding down the substrate left face the heat flux goes through a small dip but quickly increases as one approaches the back of the component. It reaches a local maximum heat flux at the back of the base of the component at $\mathrm{S} 2 \approx 9$ and then decreases to a local minimum at $\mathbf{S} 2=10.25$. It then increases and comes to a local maximum at the bottom left corner at $\mathbf{S} 2=11$. The heat flux on the bottom face shows the same symmetry as the top, however it is much higher due to colder fluid in the vicinity of the bottom face.

Nondimensional substrate surface temperatures ($\mathrm{T}_{\mathrm{sur}}$) for various Ra are shown in Fig. 6. The substrate surface temperature is computed using the harmonic mean formulation as:

$$
\begin{equation*}
T_{\text {cur }}=\frac{\left(\left(\frac{\delta X_{\mathrm{e}}}{x_{\mathrm{t}}}\right) \mathrm{T}_{\mathrm{s}}+\left(\frac{\delta \mathrm{X}_{\mathrm{f}}}{\kappa_{\mathrm{f}}}\right) \mathrm{T}_{\mathrm{f}}\right)}{\left(\frac{\delta \mathrm{X}_{\mathrm{f}}}{x_{\mathrm{t}}}+\frac{\delta \mathrm{X}_{\mathrm{f}}}{\kappa_{\mathrm{f}}}\right)} \tag{8}
\end{equation*}
$$

Figure 5. Substrate surface heat flux for various Ra

Figure 6. Substrate surface temperature for various Ra

The lowest temperatures are at the bottom of the substrate and the highest are at the top of the component. Local maxima are evident at the back of the substrate due to direct conduction from the heater. The nondimensional temperatures are higher for the lower Ra. The higher the Ra, the greater the buoyancy induced flow and hence higher heat transfer from the component, leading to lower non-dimensional temperatures. Note that if \mathbf{Q} and k_{f} are held fixed, a higher T implies a higher actual (dimensional) temperature. In such a case, higher Ra can be obtained by using a liquid with higher ρ, leading to higher buoyant forces, enhanced convection and reduced actual temperatures. Thus the dimensional results are consistent with the non-dimensional trends.

Figure 7 shows the nondimensional component surface heat flux for various Ra versus $S 1$. Table 3 shows the corresponding position of the component to S 1 with $\mathrm{S} 1=0$ at the lower right corner of the component and increasing going counter-clockwise around the component. Fluxes for all Ra show similar trends. The component front face, in direct contact with the fluid, has the lowest heat flux. The top face has the second highest heat flux and the back face has a slightly lower heat flux. The bottom of the component has generally the greatest heat flux. The largest heat flux is near the bottom right corner.

The trends of Fig. 8 show the component nondimensional surface temperatures to be similar for all Ra. Surface temperatures are fairly uniform around the component with the highest temperature near the top on the front face. The high R_{s} and R_{c} values allow the heat to be uniformly spread so that the component temperature remains fairly uniform.

Figure 7. Component surface heat flux for various Ra

Table 3. Ranges of $\mathbf{S 1}$ corresponding to different component faces

Component Face	X	Y	S1	Interface*
Front	2 to 3	0	0 to 1	c-f
Top	3	0 to -. 5	1 to 1.5	c-8
Back	3 to 2	-. 5	1.5 to 2.5	C-8
Bottom	2	-. 5 to 0	2.5 to 3	c-s

* c-f indicates component-fluid interface and c-s indicates component-subetrate interface

Maximum temperature versus Ra is shown in Fig. 9(a). A decrease in the maximum temperature from 0.122 to 0.042 is observed for an increase in Ra from $10^{3}-10^{6}$. Fig. 9 (b) shows that the change in maximum temperature versus Ra is similar for all $\mathbf{w} / \mathrm{d}_{\mathrm{t}}$. Although nondimensional temperature decreases, the dimensional temperature may go up because the nondimensional temperature is inversely proportional to the heat transfer coefficient. An increase in Q would bring about an increase in the dimensional temperature but a decrease in the nondimensional temperature. As Q increases, the natural convection flow velocities increase and this would increase the heat transfer coefficient.

B. EFFECT OF Pr

Fluorinert dielectric liquids used in immersion cooling have Pr values much greater than 1. Computations for $\operatorname{Pr}=7, \operatorname{Pr}=25$ and $\operatorname{Pr}=100$ were therefore conducted. These revealed that with other parameters remaining constant, Pr had a negligible effect on temperature contours, streamlines, heat flux or temperatures as is seen in Figs. 10-17. This would indicate that the results of experimental studies in water with $\operatorname{Pr}=7$ would apply to the dielectric liquids as well for the same value of Ra and other parameters.

C. EFFECT OF SUBSTRATE CONDUCTIVITY RATIO R $_{8}$

The streamlines and temperature contours for various R_{a} values when $\mathrm{Ra}_{\mathrm{a}}=10^{5}$ are shown in Figs. 18(a)-(e). For $.1 \leq \mathrm{R}_{8} \leq 1$ all the main flow is generated by the heater side with a very weak cell on the left side of the enclosure. When R_{d} reaches 10 both cells are of about the same strength and the streamlines form two cells that start on opposite sides of the

Figure 8. Component surface temperature for various Ra

Figure 9(a). Marimum temperature versus $\log (R a), w / d_{1}=5$

Figure 9(b). Marimum temperature versus Log(Ra) for various w/di

Figure 10(a). Temperature contours and streamlines for $\mathrm{Pr}=7$

Figure 10(b). Temperature contours and streamlines for Pr=25

Figure 10(c). Temperature contours and streamlines for Pr=100

Figure 11. Heat loss through component faces for various Pr

Figure 12. Heat loss through enclosure walls for various Pr

Figure 13. Substrate surface heat flux for various Pr

Figure 14. Substrate surface temperature for various Pr

Figure 15. Component surface heat flux for various Pr

Figure 16. Component surface temperature for various Pr

Figure 17. Maximum temperature versus Pr, Ra=10s

Figure 18(a). Temperature contours and streamlines for $\mathbf{R}_{\mathbf{z}}=\mathbf{0 . 1}$

Figure 18(b). Temperature contours and streamlines for $\mathbf{R}_{\mathbf{s}}=1$

Figure 18(c). Temperature contours and streamlines for $\mathbf{R}_{\mathbf{5}}=10$

Figure 18(d). Temperature contours and streamlines for $\mathbf{R}_{\mathbf{2}}=50$

Figure 18(e). Temperature contours and streamlines for $\mathbf{R}_{\mathbf{2}}=100$
substrate. Temperature contours and streamlines for $10 \leq R_{8} \leq 100$ essentially look the same and it appears that there is little change in the induced flow beyond $R_{s}=10$. Temperature contours show a very high gradient just outside the component for $\mathrm{R}_{\mathrm{a}}=0.1$ and the hot spot of the component is in the top left corner. For $\mathrm{R}_{\mathbf{e}}=1$ the hot spot moves towards the center of the component and as R_{i} increases the component hot spot moves towards the fluid.

Figure 19 shows the percent heat loss through the component faces for various R_{a} with $\mathrm{Ra}=10^{5}$. There is a tremendous decrease in the percent heat loss to the fluid from the front face when R_{8} is increased from 1 to 10 after which it shows only a slight decrease. As the conductivity of the substrate increases it is easier for the heat to flow through faces other than the front. The substrate acts like a fin, increasing the surface area where heat loss can occur. The back face percent heat loss increases throughout the range of R_{s} increase. The bottom and top face percent heat loss increase when Rs is increased from 0.1 to 10 and then remain fairly constant.

The percent heat loss through the enclosure walls for various R_{s} is shown in Fig. 20. The bottom wall initially shows a slight decrease when R_{g} increases from 0.1 to 1 due the left cell of the flow in the fluid bringing higher temperatures closer to the bottom wall and then a slight increase over the remaining range of R_{s} due to the increased heat conduction through the bottom portion of the substrate into the vicinity of the bottom wall. The other percent heat loss changes are a combination of the increased thermal conductivity and flow changes.

Figure 19. Heat loss through component faces for various $\mathbf{R}_{\boldsymbol{\nu}} \mathbf{R a = 1 0 s}$

Figure 20. Heat loss through enclosure walls for various $\mathbf{R}, \mathrm{Ra}=10^{5}$

Figure 21 shows the substrate surface heat flux for various $\mathbf{R s}_{\mathbf{s}}$. For $R_{s} \geq 10$ the heat flux for the substrate is fairly uniform. For $R_{8}<10$ most of the heat flux comes from the front face of the component for $\mathbf{S} 2$ ranging from 2-3. The greatest heat flux is at the base of the component at $\mathbf{S 2 = 2}$. The same pattern follows for the substrate surface temperatures in Fig. 22 with the temperatures being uniform for $R_{s} \geq 10$ and for $R_{s}<10$ the temperatures being higher over the component surface, $\mathrm{S} 2=2-3$, with the highest temperature at the top of the component, at $\mathrm{S} 2=3$.

Component surface heat flux is shown in Fig. 23. For $\mathrm{R}_{8}<10$ the heat flux through the component-fluid interface is greatest, for $S 1=0$ to 1 . For $\mathrm{R}_{8} \geq 10$ the component-substrate interface shows the higher heat flux with the bottom face having the maximum. Very little difference occurs when $\mathrm{R}_{\mathbf{s}}$ is increased beyond 50. The component surface temperature is fairly uniform for all R_{s} due to the high conductivity of the component as shown in Fig. 24. The surface temperature decreases greatly for $R_{a}=0.1$ to 10 and then decreases slightly over the remaining range with very little change between $R_{s}=50$ to 100. As the substrate conductivity increases there is less resistance to the flow of heat and hence the surface temperatures decrease.

Maximum temperature versus R_{s} is shown in Fig. 25 and shows there is little benefit to increasing $R_{\mathbf{q}}$ beyond 10 .

D. EFFFECT OF COMPONENT CONDUCTIVITY RATIO R_{c}

The effects of R_{c} on the temperature contours and streamlines are shown in Fig. 26 (a)-(d). For $\mathrm{R}_{\mathrm{c}}=1$ there is a steep thermal gradient in the component with the maximum temperature near the center of the

Figure 21. Substrate surface heat flux for various $\mathbf{R}, \mathbf{R a}=10^{5}$

Figure 22. Substrate surface temperature for various \mathbf{R}, $\mathbf{R a}=10^{5}$

Figure 23. Component surface heat flux for various $\mathbf{R}, \mathrm{Ra}=10^{\circ}$

Figure 24. Component surface temperature for various R, Ra=10s

Figure 25. Maximum temperature versus $\mathbf{R}_{\mathbf{v}} \mathbf{R a = 1 0}{ }^{\mathbf{s}}$

Figure 26(a). Temperature contours and streamlines for $\mathbf{R}_{\mathbf{c}}=1$

Figure 26(b). Temperature contours and streamlines for $\mathbf{R}_{\mathbf{c}}=25$

Figure 26(c). Temperature contours and streamlines for $\mathrm{R}_{\mathrm{c}}=50$

Figure 26(d). Temperature contours and streamlines for $\mathbf{R}_{\mathbf{c}}=100$
component. For $R_{c}=25$ the hot spot is towards the fluid face and the component is almost at a uniform temperature. For $\mathbf{R}_{\mathbf{c}}=50$ and 100 the temperature contours look identical. There is a negligible change in the streamlines for the complete range of R_{c} studied.

Figure 27 shows the percent heat loss through the component faces. For R_{c} increasing from 1 to 25 there is a large decrease in the percent heat loss from the front face and a slight decrease from the back. A large increase in the percent heat loss from the bottom and a slight increase in the top face make up for the decrease at the front and back. With the increase in component conductivity, heat flows easier through the component and a greater percent can then go out the top and bottom. The substrate has a relatively high conductivity and the top and bottom subst: ite areas act like fins. For R_{c} increasing from 25 to 100 there is a slight increase in the bottom percent heat loss and a very slight decrease from the front and the back. The bottom face uses the substrate below as a fin to move the heat to the lower cooler region of the enclosure. The heat loss through the enclosure walls, shown in Fig. 28, changes insignificantly which is expected due to no change in the fluid flow or the temperature distribution in the fluid over the entire range of R_{c} studied.

The component surface heat flux, Fig. 29, shows for $R_{c}=1$ a similar pattern for each face. Each face has a local maximum flux at the center with the largest maximum flux at the center of the back face at $S 1=2$. The low conductivity of the component limits the movement of heat, so the greater flux is associated with the surfaces on the component that have the most volume of component around them. These locations on the component

Figure 27. Heat loss through component faces for various $\mathbf{R}_{\mathbf{c}} \mathbf{R a}=10^{s}$

Figure 28. Heat loss through enclosure walls for various $\mathbf{R}_{\mathrm{c}}, \mathbf{R a}=10^{5}$
surfaces correspond to the center of each face. For $25 \leq \mathbf{R}_{\mathbf{c}} \leq 100$, the component surface heat fluxes are nearly identical with the greatest flux going through the bottom face near the fluid-component boundary. The flux is greatest here since the substrate extending below the component bottom surface acts like a fin. In addition there is induced flow over the substrate below the bottom of the component augments heat transfer from the front substrate surface below the heater.

The component surface temperatures for $\mathbf{R}_{\mathbf{c}}=1$ vary widely with the maximum occuring at $\mathrm{S} 1=0.7$ as seen in Fig. 30. For $25 \leq \mathrm{R}_{\mathrm{c}} \leq 100$ the temperature over the surface is fairly uniform. The maximum temperature versus \mathbf{R}_{c} in Fig. 31 shows little advantage in increasing \mathbf{R}_{c} higher than 25.

E. EFFECT OF COMPONENT TO SUBSTRATE WIDTH RATIO w/d

Streamlines and the temperature contours in the liquid region in Figs. 32(a)-(d) show only minor changes when w / d_{t} is changed from 0.25 to 0.999 . This occurs because the high R_{s} and R_{c} result in low solid thermal resistance, with the major temperature drop occuring in the fluid. In the component region the hot spot moves from the fluid surface to the component center as w / d_{t} increases from 0.25 to 0.999 .

The percent heat loss through the component faces is shown in Fig. 33. For $w / d_{\mathbf{t}}$ increasing from 0.25 to 0.999 there is approximately a 10% increase of the heat loss from the top face and a 20% increase from the bottom face. Both the top and the bottom percent heat losses rise because of the increased heat transfer area as $\mathbf{w} / \mathrm{d}_{\mathrm{t}}$ increases and a greater volume of

Figure 29. Component surface heat flux for various R, Ra=10s

Figure 30. Component surface temperature for various $\mathbf{R}, \mathbf{R a}=10^{s}$

Figure 31. Maximum temperature versus Re Ra=10s

Figure 32(a). Temperature contours and streamlines for $\mathbf{w} / d_{i}=0.25$

Figure 32(b). Temperature contours and streamlines for $w / d_{1}=0.5$

Figure 32(c). Temperature contours and streamlines for $\mathbf{w} / \mathrm{d}_{\mathbf{2}} \mathbf{= 0 . 7 5}$

Figure 32(d). Temperature contours and streamlines for $\mathbf{w} / \mathrm{d}_{1}=0.999$
the component next to them. There is approximately a 7\% decrease in heat loss from the front face because more heat is being taken away from the top and bottom and the front is actually becoming less of the total surface area as w / d_{t} is increased. There is approximately a 23% decrease on the back face. The back face now is also less of the total percent area of the component surface and the back has less of the substrate acting as a fin as w / d_{t} increases until there is essentially no substrate at $w / d_{t}=0.999$. There is no difference in the percent heat loss from the enclosure boundaries, Fig. 34, as was suggested from the temperature contours and streamlines.

Figure 35 shows the maximum temperature versus w / d_{t}. There is almost a linear decrease in maximum temperature with an increase in w / d_{t}. The same rate of heat is being dissipated by a larger volume which reduces the maximum temperature.

Figure 33. Heat loss through component faces for various w/d, $\mathrm{Ra}=10^{5}$

Figure 34. Heat loss through enclosure walls for various $w / d_{v} R a=10^{3}$

Figure 35. Maximum temperature versus w/d, $\mathbf{R a}=10^{5}$

IV. EXPERIMENTS

A. EXPPERIMENTAL APPARATUS

1. Additions

The details of the experimental apparatus can be found in Gaiser [Ref. 6]. It consists of a test surface with 3 columns of flush heaters with 15 heaters per column as shown in Fig. 46. The test surface is immersed in a large plate glass tank filled with deionized water. Each heater has a thermocouple attached to the midpoint of the back. Voltages of the thermocouple and heater leads are taken by a data aquisition system and a HP(Hewlett Packard) computer determines the temperatures and power of the heaters. Further additions and changes done in the experimental setup are described below.

A 3-dimensiona! traverse assembly with controller for the traverse motors and a deael ting system for the water were installed. The traverse controller interfaces with the HP computer in the two horizontal directions and a program was developed to move the traverse with the HP computer integrating the temperature acquisitions with a probe. The traverse must be manually moved in the vertical direction. See Appendix C for the traverse computer program. Deaeration was achieved by spraying water through a nozzle into a partially evacuated bottle. The water was then allowed to accumulate under the vacuum and pumped back into the tank at a rate similar to which it was being drawn out. Teflon sheets were placed over the tank's free surface to reduce the aeration of the water after it had
gone through this process. When the deaeration system was activated and a slight ($3^{\prime \prime}$ or greater Hg) vacuum was drawn, the bottle would collapse leaving the system unoperable. A nonflexible container would be desirable for a better operation of the deaeration system.

2. Changes

A change was made in the way the power input to the heaters was calculated. Upon taking over the apparatus it was noticed that the resistances of the various heaters varied by as much as $\mathbf{8 \%}$ from the lowest resistance reading to the highest. The high density heater board was taken apart and the heaters with the resistances farthest from the norm were replaced. The new heaters were of a different batch than the original heaters and they all had a resistance of 10.4 ohms originally but when they were measured through the leads after they were installed the resistances again varied by as much as 6%, with the lowest value being the same as the heater before installation and the highest resistance being 6% above the original heater resistance. Since all the heaters were the same before being installed it was assumed that the excess resistance came from the leads. The excess resistance for all leads was then determined by subtracting the original heater resistance from the resistance of the heater and the leads and a computer program that took this into account was implemented. 1% and 5% precision resistors in parrallel with the original 1% precision resistor were used to increase the current of the heaters that had less power due to the excess lead resistance. The following relation was used to determine the correct power:

$$
\begin{equation*}
P=\left(\frac{V_{L}\left(R_{P}+R_{L}\right)-V_{L}}{R_{p}^{2}}\right)\left(V-V_{L}\right) \tag{9}
\end{equation*}
$$

where the symbols are identified in the Nomenclature. Each heater and lead resistance had to be treated individually and in some cases extra line resistance had to be added to the leads to make the heaters have all the same power. A uniform and nonuniform power program were developed for the HP computer. The uniform power program was used when each heater was given the same power. The nonuniform power program was used when the power to the side columns was different than the center column of heaters. Also nonuniform and uniform data reduction progams were developed to obtain the temperatures and to reduce and store the data simultaneously for each case. See Appendixes D-H for computer programs utilized in the acquisition of experimental data.

B. LIQUID CRYSTALS

Hallcrest thermochromic liquid crystals whose optical properties of the planar texture give rise to the selective reflection of bright colors that change with temperature [Ref. 13] were used in the experiment. The liquid crystals had to be kept refrigerated prior to usage. The first step in liquid crystal application was to obtain a clean dry surface. A black backing was then applied with an air brush. After the black backing had dried, the liquid crystals were mixed with a binder with 3 parts binder to 1 part liquid crystal slurry and the mixture was applied over the backing using the air brush. Care was taken to keep the layers very thin to reduce any interference with the heat transfer process. The water in the tank had to be
kept very clean and the water filtering system was run for two days constantly before placing the test surface with the liquid crystals on it in the water. If any contamination was present, only a dark blue color would show up which was difficult to see on the black backing. Even with the water being very pure, the liquid crystals deteriorated and could only be expected to last less than two weeks. It is believed that the crystals somehow react with the polar water molecule and become inactive. In dielectric fluid this had not been a problem, which was evident in past thesis research [Ref. 14].

The crystals were calibrated against temperatures using a platinum resistance standard (Rosemont Engineering Model 920A Commuting Bridge) and a Model 913A Calibration Bath. Two ranges of liquid crystal sensitivity to temperature were used. After standardization for the colors which appeared below 30 degrees C, the crystals compared within 0.5 degrees C with the thermocouple temperatures of the heaters, but at higher temperatures (greater than 40) it was difficult to determine the change from blue to black and an agreement between the crystals and the heater thermocouples was about 5 degrees C with the thermocouple temperature always higher than the color indicated.

A problem with working with the crystals was to photograph the resulting surface temperature color patterns. It is very difficult to shoot into a glass container filled with water. All light sources outside the tank must be turned off or all that will be seen in the picture is the refection of the photographer. The correct light source was also an important consideration. Florescent lights do not have a complete spectrum of light
being emitted and the pictures taken under these conditions did not show the colors that were actually present. Taking pictures with a spot lamp on the face with a high speed film (ASA 1600) did not work because the area with the spot ended up being burned out in the picture and the surrounding area of the picture appeared black. The best method found was to obtain a light source that contained the wavelength band necessary. It was obtainable at a local photograph store and it was used with a film speed of 400 ASA or higher. Care had to be taken to keep the light source above the water and shining inside the tank. Shielding was placed so the bulb would only light up inside the tank staying away from the refecting glass and lighting only the test surface. The light was only switched on when taking pictures to avoid setting up fluid variations by warming up the tank water.

Figure 36 shows the view that is shown in the pictures to follow. It also shows the shroud and the test surface. The shroud is a clear plastic that causes a constriction to the flow and simulates another circuit board or a wall in an actual situation in electronic equipment. At no power, the test surface appears black and corresponds to ambient temperature (18 degrees C). The first picture, Fig. 37 is a picture with no shroud and a power level of .5 watts per heater. The actual colors that were present are brown which appears at 24.0 degrees C, green which appears at 25.3 degrees C, and blue which appears at 28.3 degrees C and dissappears at 44.0 degrees C where the surface returns to black. The black and white pictures can only be used to show higher temperature regions with the lighter regions on the photographs indicating where the hot spots are. The color patterns become more evident near the middle and top compared to the bottom of the heater

Figure 36. Schematic of the view that is seen in the following pictures

Figure 37. No shroud case, 5 watte per heater power input
columns. The temperature patterns seem symmetric for all three columns and there appears to be no thermal interaction between the three columns. Heat being brought up by natural convection is brought up the face and some is transfered back into the plexiglass substrate. As the power is increased with no shroud the color patterns become more evident at the bottom of the heater column. At three watts per heater power input, Fig. 38 shows again that there is no interaction between the columns. The color pattern above the top heater indicate higher temperatures in that region compared to the 0.5 watts per heater case.

A shroud is placed 6 mm in front of the test surface in Fig. 39 and entrainment of the flow is evident by the shape of the temperature patterns. The shroud prevents entrainment flow from the front and water must come from the sides towards the center column. This actually enhances cooling of the outside top heaters for a shroud spacing of 6 mm as seen in Figs. 39 \& 40, compared to when there is no shroud. The bottom heaters appear not to be effected by the shroud placement. In Fig. 41 the shroud spacing is 3 mm and the power input per heater is 0.2 watts. The color patterns now become visible at a much lower power level. The flow at the top is greatly constrained with the high temperature patterns actually merging over the center column. Temperatures are increased drastically at the 3 mm shroud spacing and Fig. 42 shows that at a 0.5 watt power input per heater the temperatures are as high as with a 1 watt, 6 mm shroud spacing case or a 2 watt, no shroud case.

Nonuniform power levels for the side columns and center column at different power input were looked at for no shroud and 3 mm shroud cases,

Figure 38. No shroud case, 3 watts per heater power input

Figure 39. $\mathbf{6} \mathrm{mm}$ shroud spacing, 5 watt per heater power input

Figure 40.6 mm shroud spacing, 1 watt per heater power input

Figure 41. 3 mm shroud spacing, 2 watt per heater power input

Figs. 43-45, and showed the same patterns as the uniform power cases. For the no shroud case there did not appear to be any interaction between the three columns. For the small shroud spacing cases there was considerable side entrainment. It was difficult to go to higher power levels in the low shroud spacing cases because air bubbles formed over the top center region and disrupted the flow and made the temperatures increase greatly even for power levels of the order of 0.5 watts per heater.

Figure 42. 3 mm shroud spacing, 5 watt per heater power input

Figure 43. No shroud case, 0.5 \& 0.2 watt per heater power input (center/sides)

Figure 44. No shroud case, 0.5 \& 1 watt per heater power input (center/sides)

Figure 45.6 mm shroud spacing, $2 \& .5$ watt per heater input (center/side)

V. NUMERICAL COMPARISON WITH EXPERIMENT

A. WHAT TO COMPARE ?

The liquid crystal temperature patterns show that there are pronounced 3 -dimensional effects in the flow and temperature patterns with low shroud spacings, especially near the top of the 3 columns of heaters. With no shroud and wider shroud spacings, the heat transfer and fluid flow problem is primarily 2 -dimensional, especially at the lower center portion of the 3 columns and at the center of the heaters. The central plane of the bottom heater of the center column (section AA in Fig. 46) was chosen for a 2-dimensional numerical comparison.

B. 0.2 WATT NUMERICAL COMPARISON

The first attempt to model the temperature measured with a thermocouple at the middle of the back of the heater for the 0.2 watt case agreed only by approximately 25%. Figure 47 shows the heater surface temperatures versus $S 1$. S 1 , as in the parametric study, is the counterclockwise contour distance around the heater starting at the lower right corner of the heater. The experimental value of the thermocouple is located at S 1 slightly greater than 1.5 . To get closer to the experimental temperature the numerical model was examined again. A two heater model was developed to account for the effect of upper heaters. Figure 48 shows the corresponding temperature contours and streamlines. With the two heater model the agreement was within approximately 13%, as seen in

Figure 46. Schematic diagram of the experimental heater studied

Figure 47. Initial 2W experimental/numerical comparison

Figure 48. Temperature contours and streamlines for 2 heater model

Fig. 49. The heaters were placed within the grooves in the plexiglass testsurface using a low thermal conductivity epoxy. During the liquid crystal work it was observed that the epoxy thermal conductivity was lower than that of plexiglass, so, a thermal conductivity of $1 / 2$ that of plexiglass was used in the numerical model to see what effect it would have on the comparison. It proved to be a slight improvement over the plexiglass thermal conductivity case but not as much of an improvement as the two heater model, as seen in Fig. 50. The dimensions of the heater were then looked at closely. The heater is made up of a Kapton sheet and an inconel sheet together. The dimensions of the Kapton were the dimensions of the heater that were being used but the inconel was actually the resistor that was causing the increase in temperature and its dimensions were smaller than the Kapton. The height of the region which contained the inconel was 0.0062 m and the width was 0.022 m . When these new smaller dimensions were used in the numerical model the agreement was much better as seen in Fig. 51. Temperatures for both thermal conductivities ($0.14 \mathrm{~W} / \mathrm{m}-\mathrm{K}$ and $0.07 \mathrm{~W} / \mathrm{m}-\mathrm{K}$) are plotted in Fig. 51 and the agreement with the experiment is within approximately 9% for the one heater model.

The heater was a layer of Kapton over a sheet of inconel as stated above. When the heater was modeled as two layers, the numerical prediction was within 7% of the experimental measurement as shown in Fig. 52. When the two heater model was used with the smaller dimensions for the heater and the heater divided into two layers, as mentioned above, Fig 53 shows that the temperature variation for the two different substrate conductivities bracketed the experimental result, as was expected.

Figure 49. First attempt at 2 heater model

Figure 50. Thermal conductivity of plexiglase changed to $.07 \mathrm{~W} / \mathrm{m}-\mathrm{K}, 1$ heater model

Figure 51. Dimensions of the heater changed to that of Inconel-1 heater

Figure 52. One beater model, heater oplit into a Kapton and Inconel layer

C. HIGHER POWER NUMERICAL COMPARISONS

The measured component temperatures at higher power levels experimental values did not agree as closely as the 0.2 watt power case. Figure 54 shows that as the power input per heater is increased the disagreement between the numerical and experimental values increases. At 0.5 watt power input the percent difference is approximately 8%. One possible reason for this is that as the power is increased, the downstream heaters have a greater effect on the upstream heater temperatures due to greater conduction through the substrate. Thus the experimentally measured temperatures are higher by a greater extent compared to the numerical model. Thus for comparison with higher power cases, additional heaters must be added both on the side and on the top in the model. Another possible reason for the percent difference increase with power is that the properties for the water used in the model were taken at the average temperature of the heater and the ambient water. Also, the inconel region of the heater was taken as a uniform heat source in the model but in reality is a ribbon that snakes up and down on the Kapton sheet. At higher power levels this could cause hotter areas near the ribbon and this could cause the numerical value to be slightly lower. Still another possibility is that there are 3 -dimensional effects in reality that the 2 dimensional model cannot detect and these effects get larger with increased power. Entrainment of the warmer fluid from the sides columns into the center region of the heater could make the experimental value greater than the 2 -dimensional model.

Figure 53. 2 heater model with heater divided into two layers

Figure 54. Higher power level two heater model recults with heater divided

D. UPPERKLOWER HEATER NUMIERICAL EVALUATION

The numerical model for two heaters provided the upper and lower heater temperatures. A study of the effects of the lower heater on the upper heater was conducted. Figures $55-59$ show the progression of the top and bottom heater temperatures as the power is increased from 0.2 to 3 watts equally in both heaters. Figures 60-61 collect the temperature patterns at the various power levels studied for the two heaters. Similar patterns are observed as power level increases for all top heaters and all bottom heaters when compared with themselves. When comparing the lower heater to upper heater temperatures, there is a larger increase in the top heater's top face temperatures. The back face temperatures do not decrease as much on the top heater as the bottom heater. Also, the bottom face temperatures of the top heater do not decrease below the temperature of the bottom of the front face contrary to the bottom heater. It is more difficult for the upper heater to lose heat because of the natural convection bringing up the heat from the lower heater, thus the upper heater temperatures are higher than the lower heater temperatures. The front face temperatures of both heaters are always closer than the other faces. As power level increases, the top, back and bottom faces become farther from their counterparts on the bottom heater.

Figures 62-65 compare the heat loss through the heater face for increasing power levels. The only face that shows an increase for the top and the bottom heater is the front face. At low power levels the percent heat loss through the front face with increasing power is its largest. Both

Figure 55. 0.2 watt case top and bottom heater surface temperatures

Figure 56. 0.5 watt surface temperatures for the top and bottom heater

Figure 57.1 watt per heater top and bottom heater surface temperatures

Figure 58.2 watts per heater top and bottom surface temperatures

Figure 59.3 watt per heater top and bottom heater surface temperatures

Figure 60. 0.2-3 watts bottom heater surface temperatures

Figure 61. 0.2-3 watt top heater surface temperatures

Figure 62. 0.2 . 3 watt front face percent heat loss for top and bottom heater

Figure 63. 0.23 watt top face percent heat loss for top and bottom heater

Figure 64. 0.2 - 3 watt back face percent heat loss for top and bottom heater
heaters show a similar pattern. The back and bottom faces percent heat loss both decrease for increasing power levels

The effect on the lower heater of a heater above it is shown in Figs. 66-67. For 0.2 watt power input per heater shown in Fig. 66, the one heater model surface temperatures are all less than the corresponding 2 heater model surface temperatures for the bottom heater For 3 watts power per heater, shown in Fig. 67 the opposite is true. The surface temperatures for the bottom heater of the 2 heater model are lower except at the top of the heaters where it is equal to the one heater model. The increased convection for the 2 heater model when the heat input is much higher causes lower temperatures at the bottom of the lower heater. Thus for 0.2 watts, conduction from the upper heater to the lower heater causes an increase in temperature of the bottom heater, whereas for a higher power input of 3 watts, the increased convection caused a cooling effect on the bottom heater.

Figure 65. 0.23 watt bottom face percent heat loss for top and bottom heater

Figure 66. 0.2 watt surface temperatures for bottom heater for 182 heater models

Figure 67.3 watt surface temperatures for bottom heater for $1 \& 2$ beater models

VI. CONCLUSIONS

During the course of the numerical and experimental study, several important conclusions were drawn about the transfer of heat from a flush heat source. A constant flux of temperature boundary condition must be used carefully as the numerical study showed that it can be far from uniform when using the conjugate solution to solve the problem. With the advent of faster computers it seems that all heat transfer problems should be solved with a combined conduction/convection procedure to improve accuracy of the solution.

Changes in the Pr between 7 and 100 did not change the nondimensional temperatures. This was extremely important to this study because the experimental work has been done in water, with a Pr of 7 and most fluids that are currently being used for the immersion of electronic components are fluorinerts and have a Pr greater than 10 and less than 100. The experimental results should therefore be applicable to these fluids as well.

Increasing the R_{s} provides substantial cooling enhancement when R_{g} is less than 10 but increasing it past 10 only provides slight enhancement. For the designer of electronic equipment, this should help in the decision as to how high a conductivity the substrate should be. When a choice of more than one material is available, the cheapest material with an R_{8} of 10 or greater could be chosen.

An increase in R_{c} provides lower and more uniform component temperatures primarily for R_{c} less than 25 . The designer can once again
look for the cheapest material that would do the job with an \mathbf{R}_{c} of $\mathbf{2 5}$ or greater and optimize the cooling of the component as well.

There is almost a linear decrease in maximum temperature with increase in w / d_{t}. This would suggest that the componet should be made as wide as the substrate if the design permits.

Finally, liquid crystals proved to be a valuable tool in determining the areas of the hot flow up the front of an experimental surface. The effect of the shroud spacing became very evident as the spacing decreased. Although at small shroud spacing the 3-D effects of the fluid flow were evident, at large spacing and no shroud conditions and near the bottom of the high density board always the heat transfer process could be modeled as 2-dimensional. Very good agreement of numerical and experimental results were seen, especially at the low power levels.

VII. RECOMMIENDATIONS

In continuation of this study, it is suggested that the same configuration of three high density heater columns be used, however it is recommend that the following aspects be further investigated:
-Utilize liquid crystals to determine the spacing where shroud effects are negligible
-Use a 3 heater model to determine what effects this would have on the lower heater at the higher power levels
-Analyse the effects of using non-steady power inputs on the heat transfer
-Utilize a 3-dimensional numerical model to see if 3-D effects are significant, especially at the high power levels
-A nonflexible container should be acquired for the dearation system to allow the use of the test surface at higher power levels
-High power studies to determine the onset of turbulence could be looked at with the accompanying effects on the heat transfer

APPENDIX A USER PORTION OF FINITE DIFFERENCE PROGRAMS

```
\overline{c}
C
        BLOCK DATA
        LOGICAL LSOLVE,LPRINT,LBLK,LSTOP
        COMMON F(75,75,5),P(75,75),RHO(75,75),GAM(75,75),CON(75,75),
    1 AIP(75,75),AIM(75,75),AJP(75,75),AJM(75,75),AP(75,75),
    2 X(75),XU(75),XDIF(75),XCV(75),XCVS(75).
    3 Y(75),YV(75),YDIF(75),YCV(75),YCVS(75),
    4 YCVR(75),YCVRS(75),ARX(75),ARXJ(75),ARXJP(75),
    5 R(75),RMN(75),SX(75),SXMN(75),XCVI(75),XCVIP(75)
    COMMON DU(75,75),DV(75,75),FV(75),FVP(75),
    1 FX(75),FXM(75),FY(75),FYM(75),PT(75),QT(75)
    COMMON/INDX/NF,NFMAX,NP,NRHO,NGAM,L1,L2,L3,M1,M2,M3,
    1IST,JST,ITER,LAST,TITLE(13),RELAX(13),TIME,DT,XL,YL,
    2IPREF,JPREF,LSOLVE(10),LPRINT(13),LBLK(11),MODE,NTIMES(10),
    3RHOCON, ZERO
        COMMON/CNTL/LSTOP
        COMMON/SORC/SMAX,SSUM
        COMMON/COEF/FLOW,DIFF,ACOF,ALFA
        DIMENSION U(75,75),V(75,75),PC(75,75)
        EQUIVALENCE(F(1,1,1),U(1,1)),(F(1,1,2),V(1,1)),(F(1,1,3),
    1PC(1,1))
        DIMENSION TH(75),THU(75),THDIF(75),THCU(75),THCVS(75)
        EQUIVALENCE(X(1),TH(1)),(XU(1),THU(1)),(XDIF(1),THDIF(1)),
    1(XCV(1),THCV),(XCVS(1),THCVS(1)),(XL,THL)
        DATA NFMAX,NP,NRHO,NGAM/5,6,7,8/
        DATA LSTOP,LSOLVE,LPRINT/1*.FALSE.,10*.FALSE.,13*.FALSE./
        DATA MODE,TIME,ITER/1,0.,0/
        DATA RELAX,NTIMES/13*1.,10*1/
        DATA LBLK/11*.TRUE./
    DATA DT,IPREF,JPREF,RHOCON/1.E+10,1,1,1.0/
C********************************************************************
C ENTER DATA INTO LABELED COMMONS USING DATA STATEMENTS
C*********************************************************************
    DATA TITLE(1),TITLE(2),TITLE(3),TITLE(4),
    1TITLE(6)/'VELU','VELV'.'STFN','TEMP',
    2'PRES'/
            DATA (LSOLVE(I),I=1,4),LSOLVE(6),LPRINT(3)/6*.TRUE./
            DATA RELAX(1),RELAX(2),RELAX(4),RELAX(6),ALFA/.04,.04,.4,.4,.1/
            DATA LAST/5000/
C DATA LAST/5/
            END
C*************************************************************
```

COMMON $F(75,75,5), P(75,75), R H O(75,75), \operatorname{GAM}(75,75), \operatorname{CON}(75,75)$, 1 AIP $(75,75), \operatorname{AIM}(75,75), \operatorname{AJP}(75,75), \operatorname{AJM}(75,75), \operatorname{AP}(75,75)$,
$2 \times(75), X U(75), X D I F(75), X C V(75), X C V S(75)$.
$3 Y(75), Y V(75), Y D I F(75), Y C V(75), Y C V S(75)$,
4 YCVR(75), YCVRS(75), ARX(75), ARXJ(75), ARXJP(75),
5 R(75), RMN(75), SX(75), SXMN(75), XCVI(75), XCVIP(75)
COMMON DU(75,75), DV(75,75),FV(75),FVP(75),
$1 \mathrm{FX}(75), \mathrm{FXM}(75), \mathrm{FY}(75), \mathrm{FYM}(75), \mathrm{PT}(75), \mathrm{QT}(75)$
LOGICAL LSOLVE, LPRINT, LBLK, LSTOP
COMMON/INDX/NF,NFMAX,NP,NRHO,NGAM,L1,L2,L3,M1,M2,M3,
1IST, JST, ITER,LAST, TITLE(13), RELAX(13), TIME, DT, XL,YL,
2IPREF, JPREF, LSOLVE(10), LPRINT(13), LBLK(11), MODE,NTIMES (10), 3RHOCON, 2ERO
COMMON/CNTL/LSTOP
COMMON/SORC/SMAX, SSUM
COMMON/COEF/FLOW,DIFF,ACOF,ALFA
DIMENSION U(75, 75$), V(75,75), \operatorname{PC}(75,75)$
$\operatorname{EQUIVALENCE}(F(1,1,1), U(1,1)),(F(1,1,2), V(1,1)),(F(1,1,3)$,
$1 \mathrm{PC}(1,1))$
DIMENSION TH(75), THU(75),THDIF(75),THCU(75),THCVS(75)
EQUIVALENCE(X(1), TH(1)), (XU(1), THU(1)),(XDIF(1), THDIF(1)),
1 (XCV(1),THCV),(XCVS(1), THCVS(1)),(XL,THL)
DIMENSION $T(75,75), \operatorname{STO}(75,75), \operatorname{IBODY}(75,75)$
EQUIVALENCE (T(1,1),F(1,1,4))
LOGICAL LREAD, LWRITE
DIMENSION D(10),H(10),W(10), Q(10)
DIMENSION TTOP(75), TSIDES $(2,75), \operatorname{TBOT}(75), \operatorname{QTOP}(75), Q S I D E S(2,75)$,
1QBOT (75), QHTR(75),THBSID(75),THTOP(75),THBOT(75)
CHARACTER* 1 AREAD
C***
ENTRY GRID
C***
write (36,*) $k s=10, r a=10 e 6$,
WRITE ($36, *)$
C SET UP THE GRID
N1 $X=11$
$\mathrm{N} 2 \mathrm{X}=6$
$\mathrm{N} 3 \mathrm{X}=9$
$N 4 \mathrm{X}=11$
N5 $\mathrm{X}=17$
$\mathrm{N} 6 \mathrm{X}=8$
$\mathrm{N} 7 \mathrm{X}=10$
$\mathrm{N} 1 \mathrm{Y}=8$
$\mathrm{N} 2 \mathrm{Y}=12$
$N 3 Y=15$
$\mathrm{N} 4 \mathrm{Y}=15$
N5Y=11
N6Y=12
C HEATER DIMENSIONS
WIDTH=. 02
H1 $=.0078$
DEPTH=.5*H1
C SET UP THE DIMENSIONS OF THE ENCLOSURE
ALI $=3 * \mathrm{H} 1 / \mathrm{Hl}$
AL 2 $=\mathrm{H} 1 / \mathrm{H} 1$
AL3 $=($ H1-DEPTH $) /$ H1
AL4=DEPTH/H1
ALS $=2 * \mathrm{H}_{1} / \mathrm{HI}$
AL6=2*H1/H1
AL7=H1/H1

```
    BLI=2*H1/H1
    BL2=2*H1/H1
    BL 3=H1/H1
    BL4=2*H1/H1
    BL5=2*H1/H1
    BL6=H1/H1
    DX1=AL1/N1X
    DX2=AL2/N2X
    DX3=AL3/N3X
    DX4=AL4/N4X
    DX5=AL5/N5X
    DX6=AL6/N6X
    DX7=AL7/N7X
    DY1=BL1/N1Y
    DY2=BL2/N2Y
    DY3=BL3/N3Y
    DY4=BL4/N4Y
    DY5=BL5/N5Y
    DY6=BL6/N6Y
    MAKING OF THE GRID
    XU(2)=0
    FIRST=3
    LLAST=3-1+N1X
    DO 11 I=FIRST,LLAST
        XU(I)=XU(I-1)+DX1
    11 CONTINUE
    FIRST=LLAST+1
    LLAST=LLAST +N2X
    DO 12 I=FIRST,LLAST
        XU(I)=XU(I-1)+DX2
    12 CONTINUE
    FIRST=LLAST+1
    LLAST=LLAST+N3X
    DO 13 I=FIRST,LLAST
        XU(I)=XU(I-1)+DX3
    13 CONTINUE
    FIRST=LLAST+1
    LLAST=LLAST+N4X
    DO 14 I=FIRST,LLAST
        XU(I)=XU(I-1)+DX4
    14 CONTINUE
    FIRST=LLAST +1
    LLAST=LLAST+N5X
    DO }15\textrm{I}=\textrm{FIRST,LLAST
        XU(I)=XU(I-1)+DX5
    15 CONTINUE
    FIRST=LLAST+1
    LLAST=LLAST+N6X
    DO 16 I=FIRST,LLAST
        XU(I)=XU(I-1)+DX6
    16 CONTINUE
    FIRST=LLAST+1
    LLAST=LLAST+N7X
    DO 17 I=FIRST,LLAST
        XU(I)=XU(I-1)+DX7
    17 CONTINUE
    L1=LLAST
    XL=XU(LLAST)
    YV(2)=0
    FIRST=3
```

LLAST=FIRST-1+N1Y
DO 19 I=FIRST,LLAST $\mathrm{YV}(\mathrm{I})=\mathrm{YV}(\mathrm{I}-1)+\mathrm{DYI}$
19 CONTINUE
FIRST=LLAST +1
LLAST $=$ LLAST +N 2 Y
DO 20 I=FIRST, LLAST $\mathrm{YV}(\mathrm{I})=\mathrm{YV}(\mathrm{I}-1)+\mathrm{DY} 2$
20 CONTINUE
FIRST=LLAST+1
LLAST=LLAST $+N 3 Y$
DO 21 I=FIRST,LLAST $\mathrm{YV}(\mathrm{I})=\mathrm{YV}(\mathrm{I}-1)+\mathrm{DY} 3$
21 CONTINUE

FIRST=LLAST+1
LLAST=LLAST+N4Y
DO 22 I=FIRST,LLAST $Y V(I)=Y V(I-1)+D Y 4$
22
CONTINUE
FIRST=LLAST +1
LLAST=LLAST+N5Y
DO $23 \mathrm{I}=\mathrm{FIRST}$, LLAST $\mathrm{YV}(\mathrm{I})=\mathrm{YV}(\mathrm{I}-1)+\mathrm{DY} 5$
23 CONTINUE
FIRST=LLAST+1
LLAST $=$ LLAST + N6Y
DO 24 I=FIRST,LLAST $Y V(I)=Y V(I-1)+D Y 6$
24 CONTINUE
M1=LLAST
$Y \mathrm{~L}=\mathrm{YV}(\mathrm{LLAST})$
RETURN
C
ENTRY START
C CIRCUIT BOARD CORNERS
$N A=N 1 X+N 2 X+2$
$\mathrm{NB}=\mathrm{N} 1 \mathrm{X}+\mathrm{N} 2 \mathrm{X}+\mathrm{N} 3 \mathrm{X}+\mathrm{N} 4 \mathrm{X}+1$
$\mathrm{NC}=\mathrm{N} 1 \mathrm{Y}+2$
$\mathrm{ND}=\mathrm{N} 1 \mathrm{Y}+\mathrm{N} 2 \mathrm{Y}+\mathrm{N} 3 \mathrm{Y}+\mathrm{N} 4 \mathrm{Y}+1$
C TEMPERATURE PRINTOUT LOCATION
$\mathrm{ITL}=\mathrm{INT}(\mathrm{N} 3 \mathrm{Y} / 2)+1$
C HEATER LOCATIONS
$N Q X=N B$
NQY1 $=\mathrm{NC}+\mathrm{N} 2 \mathrm{Y}$
C INITIAL CONDITIONS
DO $100 \mathrm{~J}=1, \mathrm{M} 1$
DO $100 \mathrm{I}=1, \mathrm{~L} 1$
$U(I, J)=0$.
$V(I, J)=0$.
$T(I, J)=0$.
STO (I, J) $=0$.
100 CONTINUE
C***RELAXATION FOR BOUYANT FORCE (NOW FOUND AT THE TOP)
C $\quad A L F A=.1$
ALFAM=1.-ALFA
C PROPERTY ENTRY POINT
$\mathrm{RA}=1$. E 6
$\mathrm{PR}=25$
$C P=4185$

```
    RHOF=999.0
BETA=162.020E-6
G=9.807
CONFLD=.596
CONPLX=10*CONFLD
CONHTR=25*CONFLD
DYNVIS=PR*CONFLD/CP
XKK=CONFLD
ALPHA=CONFLD/(RHOF*CP)
Q1=RA*ALPHA*CONFLD*DYNVIS/(RHOF*G*BETA*H1*H1*H1)
USTAR=SQRT(G*BETA*Q1*H1/CONFLD)
AMU=(DYNVIS/(RHOF*H1*USTAR))
DUMMY=CP*RHOF*HI*USTAR
C DUMMYI USED FOR DIMENSIONAL HEAT FLUXES
    DUMMY1=Q1 *DUMMY/(H1*CONFLD)
    AMUP=CONFLD/DUMMY
    GAM2=CONPLX/DUMMY
    GAM4=CONHTR/DUMMY
    XQ=Q1/(DEPTH*H1)
    EIN=Q1
    SOURCE=CONFLD/(CP*DEPTH*RHOF*USTAR)
C PRINT *, 'I IF WANT TO READ FILE, 2 IF STARTING FROM SCRATCH'
C READ *, IFREAD
    IFREAD=2
    IF(IFREAD.EQ.1)THEN
    PRINT*, 'READING DATA'
C
C***READ DATA***
C NTIME=TOTAL NUMBER OF TIME STEPS
C ITIME=CURRENT TIMESTEP
    rewind(46)
    NTIME=1
    read(46) NTIME,M1,L1
C
    PRINT DATA FOR GRID
    read(46) (YV(J),J=2,M1)
    read(46) (XU(I),I=2,LI)
    read(46) (Y(J),J=1,M1)
    read(46) (X(I),I=1,L1)
C
    READ DATA FOR DEPENDENDT VARIABLES
    ITIME=1
    read(46) ITIME
    DO 3000 I =1,M1
3000 read(46) (V(J,I),J=1,LI)
    DO 3020 I=1,M1
3020 read(46) (U(J,I),J=1,Ll)
    DO 3030 I=1,M1
3030 read(46) (T(J,I),J=1,Ll)
    DO 3040 I=1,MI
3040 read(46) (P(J,I),J=1,Ll)
    DO 3050 I=1,M1
3050 read(46) (STO(J,I),J=1,L1)
    DO 3060 I=1,M1
3060 read(46) (F(J,I,3),J=1,L1)
    DO 3070 I=1,M1
3070 read(46) (IBODY(J,I),J=1,L1)
    close(46)
    ELSE
    ENDIF
```

```
        RETURN
        ENTRY DENSE
        RETURN
        ENTRY BOUND
        DO 300 I=2,L2
        T(I,M1)=0
        T(I,1)=0
    300 CONTINUE
        DO 301 I=2,M2
        T(L1,I)=0
        T(1,I)=0
    301 CONTINUE
    RETURN
    ENTRY OUTPUT
C IF(ITER.NE.0)GO TO 400
C PRINT 401
C 401 FORMAT(' ITER',6X,'SMAX',8X,'SSUM ',7X,'V(FRONT)',
C 1 6X,'T(HEATER)')
C 400 PRINT 403,ITER,SMAX,SSUM,V(NQX+1,NQY1+2),T(NQX,NQY1 + 2)
C 403 FORMAT(I6,1P5E12.3)
    IF(ITER.NE.O)GO TO 400
        write(36,401)
    401 FORMAT(' ITER',6X,'SMAX', BX,'SSUM ',7X,'V(FRONT)',
    1 6X,'T(THERMC)')
    400 IF(INT(ITER/25)*25.NE.ITER)GOTO 404
    write(36,403)ITER,SMAX,SSUM,V(NQX+1,NQY1+ITL),T(NQX,NQY1+ITL)
    403 FORMAT(I6,1P5E12.3)
    404 CONTINUE
        IF(ITER.LT.LAST) RETURN
        CALL PRINT
        SSUM=0.
        NCOUNT=0
    982 CONTINUE
        S2=(YV(3)-YV(2))*H1
        IF(NCOUNT.EQ.1)S2=(YV(M1)-YV(M2))*H1
        LO 983 I= 2,II-1
        SI=(XU(I+1)-XU(I))*HI
        POWER=2*XKK*S1*(T(I,2)*Q1/CONFLD)/S2
        IF(NCOUNT.EQ.1)POWER=2*XKK*S1*(T(I,M2)*Q1/CONFLD)/S2
        SSUM=POWER+SSUM
    983 CONTINUE
        NCOUNT = NCOUNT+1
        IF(NCOUNT.LT.1.5) GO TO }98
        NCOUNT=0
    984 CONTINUE
        S2=(XU(3)-XU(2))*H1
        IF(NCOUNT.EQ.1)S2=(XU(L1)-XU(L2))*H1
        DO 985 I=2,M1-1
        SI=(YV(I+1)-YV(I))*HI
        POWER=2*XKK*S1*(T(2,I)*Q1/CONFLD)/S2
        IF(NCOUNT,EQ.1) POWER=2*XKK*S1*(T(L2,I)*Q1/CONFLD)/S2
        SSUM=POWER+SSUM
    985 CONTINUE
    NCOUNT=NCOUNT+1
    IF(NCOUNT.LT.1.5) GOTO 984
    write(36,*)
    write(36,*) 'ENERGY IN = ',EIN
```

```
        write(36,*)
        write(36,*) 'ENERGY OUT = ',SSUM
        write(36,*)
        write(36,*) 'SURFACE TEMPERATURES'
        write(36,*)
        DO 987 I=1,75
        TTOP(I)=0
        TBOT(I)=0
        OTOP(I)=0
        QBOT(I)=0
        QHTR(I)=0
        THTOP(I)=0
        THBOT(I)=0
        THBSID(I)=0
    DO 987 J=1,75
        TSIDES (1,75)=0
        TSIDES(2,75)=0
        QSIDES(1,75)=0
        QSIDES(2,75)=0
    987 CONTINUE
C
* CALCULATION Of SUBSTRATE SURFACE temperatures
        DO 988 I=NA,NB
        TTOP(I)=(T(I,ND)*.5*YCV(ND+1)/CONFLD+T(I,ND+I)*.5*YCV(ND)/CONPLX)/
        1(.5*(YCV(ND+1)/CONFLD+YCV(ND)/CONPLX))
        TBOT(I)=(T(I,NC)*.5*YCV(NC-1)/CONFLD+T(I,NC-1)*.5*YCV(NC)/CONPLX)/
        1(.5*(YCV(NC-1)/CONFLD+YCV(NC)/CONPLX))
    988 CONTINUE
        DO 989 I=ND,NC,-1
        TSIDES(1,I)=(T(NA,I)*.5*XCV(NA-1)/CONFLD+T(NA-1,I)*.5*XCV(NA)
        1/CONPLX)/(.5*(XCV(NA-I)/CONFLD+XCV(NA)/CONPLX))
        TSIDES(2,I)=(T(NB,I)*.5*XCV(NB+I)/CONFLD+T(NB+1,I)*.5*XCV(NB)
        1/CONPLX)/(.5*(XCV(NB+1)/CONFLD+XCV(NB)/CONPLX))
            IF((I,LT.NQY1).OR.(I.GT.NQY1+N3Y-1))GOTO989
        TSIDES(2,I)=(T(NB,I)*.5*XCV(NB+1)/CONFLD+T(NB+1,I)*.5*XCV(NB)
    1/CONHTR)/(.5*(XCV(NB+1)/CONFLD+XCV(NB)/CONHTR))
    989 CONTINUE
    write(36,*) 'TOP
    write(36,4000) (TTOP(I),I=NA,NB)
    write(36,*) 'BACK '.' FRONT'
    DO 990 I=ND,NC,-1
    990 write(36,4001) TSIDES(1,I),TSIDES(2,I)
    write(36,*) 'BOTTOM'
    write(36,4000) (TBOT(I),I=NA,NB)
4000 FORMAT(1X,6E11.4/1X,6E11.4)
4001 FORMAT(1X,E11.4,20X,E11.4)
C
C SUBStrATE SURFACE heat fluXES
    write(36,*)
    write(36,*) 'SURFACE HEAT FLUXES-NONDIMENSIONAL'
    write(36,*)
    DO 994 I=NA,NB
    QTOP(I)=(T(I,ND)-T(I,ND+1))/(.5*YCV(ND)/GAM2 +.5*YCV(ND+1)
    1/AMUP)
    QBOT(I)=(T(I,NC)-T(I,NC-1))/(.5*YCV(NC)/GAM2+.5*YCV(NC-1)
    1/AMUP)
994 CONTINUE
    write(36,4000) (QTOP(I),I=NA,NB)
    DO }995\mathrm{ I=ND,NC,-1
    QSIDES(1,I)=(T(NA,I)-T(NA-1,I))/(.5*XCV(NA)/GAM2*.5*XCV(NA-1;
```

```
        1/AMUP)
        QSIDES(2,I)=(T(NB,I)-T(NB+1,I))/(.5*XCV(NB)/GAM2+.5*XCV(NB+1)
    1/AMUP)
    IF((I.LT.NQY1).OR.(I.GT.NQY1+N3Y-1))GOTO995
    QSIDES(2,I)=(T(NB,I)-T(NB+1,I))/(.5*XCV(NB)/GAM4+.5*XCV(NB+1)
    1/AMUP)
    995 CONTINUE
    DO 996 I=ND,NC,-1
    996 write(36.4001) QSIDES(1,I),QSIDES(2,I)
    write(36,4000) (QBOT(I),I=NA,NB)
C
    write(36,*)
    write(36,*) 'DIMENSIONAL SUBSTRATE HEAT FLUXES'
    write(36,*)
    write(36,4000) (QTOP(I)*DUMMY1,I=NA,NB)
    DO 1050 I=ND,NC,-1
    1050 write(36,4001) QSIDES(1,I)*DUMMY1,QSIDES(2,I)*DUMMY1
    write(36,4000) (QBOT(I)*DUMMY1,I=NA,NB)
c
    write(36,*)
    write(36,*) 'LOCATION OF SUBSTRATE TEMPERATURES AND FLUXES'
    write(36,*)
    write(36,*) 'TOP ROW ','1 Y',' & X''S'
    write(36,'(1X,E11.4/6E11.4/ 6E11.4)') YV(ND+1),(X(I),I=NA,NB)
    write(36,*)
    write(36,*) 'BACK AND FRONT X''S'
    write(36,'(1X,Ell.4,2X,E11.4)') XU(NA),XU(NB+1)
    write(36,*) 'Y POSITIONS'
    DO 1020 I=ND,NC,-1
1020 write(36,'(5X,E11.4)') Y(I)
    write(36,*) 'BOTTOM ROW Y AND X''S'
    write(36,'(1X,Ell.4/6El1.4/6El1.4)') YV(NC),(X(I),I=NA,NB)
    write(36,*)
    write(36,*) 'HEATER SURFACE TEMPERATURES'
    DO 1021 I=NA +N3X,NB
    THTOP(I)=(T(I,NQY1+N3Y)*.5*YCV(NQY1)/CONHTR+T(I,NQY1+N3Y-1)*.5*
    1YCV(NQY1+N3Y)/CONRLX)/(.5*(YCV(NQY1)/CONHTR+YCV(NQY1+N3Y)/CONPLX))
    THBOT(I)=(T(I,NQY1)*.5*YCV(NQY1-1)/CONPLX+T(I,NQY1-1)*.5*
    1YCV(NQY1)/CONHTR)/(.5*(YCV(NQY1-1)/CONPLX+YCV(NQY1)/CONHTR))
1021 CONTINUE
    DO 1022 I=ND,NC,-1
    THBSID(I)=(T(NA+N3X,I)*.5*XCV(NB-N4X)/CONPLX+T(NB-N4X,I)*.5
    1*XCV(NA+N3X)/CONHTR)/(.5*(XCV(NB-N4X)/CONPLX+XCV(NA+N3X)/CONHTR))
1022 CONTINUE
    write(36,*) 'HEATER TOP'
    write(36,4000) (THTOP(I),I=NA+N3X,NB)
    write(36,*) 'BACK , ', FRONT'
    DO 1025 1mNQY1+N3Y-1,NQY1,-1
1025 write(36,4001) THBSID(I),TSIDES(2,I)
    write(36,*) 'BOTTOM'
    write(36,4000) (THBOT(I),I=NA+N3X,NB)
C
C heater suface heat fluxes
    write(36,*)
    write(36,*) 'HEATER SURFACE HEAT FLUXES - NONDIMENSIONAL'
    write(36,*)
    IHTRC=1
    DO 997 I=NQX-N4X+1,NQX
        QHTR(IHTRC)=(T(I,NQY1+N3Y-1)-T(I,NQY1+N3Y))/(.5*YCV(NQY1+N3Y-1)
```

```
    1 /GAM4+.5*YCV(NQY1 +N3Y)/GAM2)
        IHTRC=IHTRC+1
997 CONTINUE
    DO 998 I=NQX-N4X+1,NQX
        QHTR(IHTRC)=(T(I,NQY1)-T(I,NQY1-1))/(.5*YCV(NQY1)
    1 /GAM4+.5*YCV(NQY1-1)/GAM2)
    IHTRC=IHTRC+1
998 CONTINUE
    DO 999 I=NQY1+N3Y-1,NQY1,-1
        QHTR(IHTRC)=(T(NQX-N4X+1,I)-T(NQX-N4X,I))/(.5*XCV(NQX-N4X+1)
    1/GAM4+.5*XCV(NQX-N4X)/GAM2)
            IHTRC=IHTRC+1
999 CONTINUE
    write(36.4000) (QHTR(I),I=1,N4X)
    HFTOT=0
    DO 1001 I=1,N3Y
    write(36,4002) QHTR(2*N4X+I),QSIDES(2,NQY1+N3Y-I)
    HFTOT=HFTOT+QSIDES(2,NQYI +N3Y-I)*YCV(NQY1+N3Y-I)
1001 CONTINUE
    write(36,4000) (QHTR(N4X+I),I=1,N4X)
4002 FORMAT(1X,E11.4,10X,El1.4)
    write(36,*)
    wtite(36,*) 'HEAT GOING DIRECTLY TO FLUID = ',HFTOT*DUMMY1*H1
    write(36,*)
    write(36,*)
    write(36,*) 'DIMENSIONAL HEATER HEAT FLUXES'
    write(36,*)
    write(36,4000) (QHTR(I)*DUMMY1,I=1,N4X)
    DO 1051 I=1,N3Y
1051 write(36,4002) QHTR(2*N4X+I)*DUMMY1,QSIDES(2,NQY1+N3Y-I)*DUMMY1
    write(36,4000) (QHTR(N4X+I)*DUMMY1,I=1,N4X)
    write( 36,*)
    write(36,*) 'LOCATION OF HEATER TEMPERATURES AND FLUXES'
    write(36,*)
    write(36,*) 'TOP ROW ','1 Y',' & X''S'
    write(36,'(1X,E11.4/6E11.4/6E11.4)')YV(NQY1+N3Y),
    1(X(I),I=NA+N3X,NB)
    write( 36,*)
    write(36,*) 'BACK AND FRONT X''S'
    write(36,'(1X,E11.4,2X,E11.4)') XU(NA+N3X),XU(NB+1)
    write(36,*) 'Y POSITIONS'
    DO 1030 I =NQY1+N3Y-1,NQY1,-1
1030 write(36,'(5X,El1.4)') Y(I)
    write(36,*) 'BOTTOM ROW Y AND X''S'
    write(36,'(1X,E11.4/6E11.4/6E11.4)') YV(NQY1),(X(I),I=NA+N3X,NB)
    write(3j,*)
    HPTOP=0
    HPBOT=0
    DO 1002 I=1,N4X
    HPTOP=HPTOP+QHTR(I)*XCV(NQX-N4X+I)
    HPBOT=HPBOT+QHTR(N4X+I)*XCV(NQX-N4X+I)
1002 CONTINUE
    HPBACK=0
    DO 1003 I= 2*N4X+1.2*N4X+N3Y
        HPBACK=HPBACK+QHTR(I)*YCV(NQY1)
1003 CONTINUE
    HTRTOT=HFTOT+HPTOP+HPBOT+HPBACK
    PHTRF=100*HFTOT/HTRTOT
    PHTRT=100*HPTOP/HTRTOT
    PHTRL=100*HPBACK/HTRTOT
```

```
        PHTRB=100*HPBOT/HTRTOT
        PHTOT=PHTRF+PHTRT+PHTRL+PHTRB
C
C MAXIMUM TEMPERATURE
    write( 36,*)
    write(36,*) 'HEATER TEMPERATURES'
    write(36,*)
    TMAX=0
    IXX=0
    JYY=0
    DO 1005 J=N3Y,1,-1
        write(36,4000) (T(NQX-N4X+I,NQY1-1+J),I=1,N4X)
        DO 1005 K=1,N4X
        IF(TMAX.LT.T(NQX-N4X+K,NQY1-1+J)) THEN
            TMAX=T(NQX-N4X+K,NQY1-1+J)
            IXX=K
            JYY=J
        ELSE
        ENDIF
1005 CONTINUE
    write(36,*)
    write(36,'(1X,A,3X,E11.4)') 'MAX TEMPERATURE IS', TMAX
    write(36,*)
    write(36,*) 'POSITION FROM LOWER LEFT IS'
    write(36,*) 'RIGHT',IXX
    write(36,*) 'UP',JYY
    write(36,*)
    write(36,*) 'PERCENT HEATER ENERGY LOST TO FLUID = ',PHTRF
    write(36,*) 'PERCENT HEATER ENERGY LOST TO TOP = ',PHTRT
    write(36,*) 'PERCENT HEATER ENERGY LOST TO BACK = ', PHTRL
    write( 36,*) 'PERCENT HEATER ENERGY LOST TO BOTTOM*:,PHTRB
    write(36,*) '------------------------------------------
    write(36,*)'TOTAL PERCENTAGE = ', PHTOT
    write(36,*)
    write(36,*)
    write(36,*) 'ENERGY BALANCE'
    write(36,*)
    QLEFT=0
    DO 1010 I=2,M2
1010 QLEFT=QLEFT+T(2,I)*Q1*YCV(I)/XDIF(2)
    QUPPER=0
    DO 1012 I=2,L2
1012 QUPPER=QUPPER+T(I,M2)*Q1*XCV(I)/YDIF(MI)
    QRIGHT=0
    DO 1014 I=2,M2
1014 QRIGHT=QRIGHT+T(L2,I)*Q1*YCV(I)/XDIF(Ll)
    QLOWER=0
    DO 1016 I=2,L2
1016 QLOWER=QLOWER+T(I,2)*Q1*XCV(I)/YDIF(2)
    QOUT=QLEFT+QUPPER+QRIGHT+QLOWER
    PLEFT=QLEFT*100/QOUT
    PUPPER=QUPPER*100/QOUT
    PRIGHT=QRIGHT* 100/QOUT
    PLOWER=QLOWER*100/QOUT
    PTOT=PLEFT+PUPPER+PRIGHT+PLOWER
    write(36,*)
    write(36,*) 'ENERGY IN EQUALS'.EIN
    write(36,*)
    write(36,*) 'ENERGY OUT EQUALS'.QOUT
    write(36.*)
```

```
    write(36,*)
    write(36,*) 'PERCENTAGE OF HEAT LOSS THRU ENCLOSURE WALLS'
    write(36,*)
    write(36,*) 'LEFT WALL', PLEFT
    write(36,*) 'TOP WALL',PUPPER
    write(36,*) 'RIGHT WALL',PRIGHT
    write(36,*) 'BOTTOM WALL', PLOWER
```



```
    write(36,*) 'TOTAL EQUALS',PTOT
    write(36,*)
    write(36,*) 'PARAMETERS'
    write(36,*)
    write(36,*) 'H/H1= =, BLl+BL2+BL3+BL4+BL5+BL6
    write(36,*) 'D/H1 = ',BL2
    write(36,*) 'L/H1 = ',BL4
    write(36,*) 'ST/H1 = ',BL5+BL6
    write(36,*) 'SB/H1 = ',BL1
    write(36,*) 'DT/H1 = ',AL3+AL4
    write(36,*)
    write(36,*) 'RA = ',RA
    write(36,*) 'PR = ', PR
    write(36,*)'RS = ',CONPLX/CONFLD
    write(36,*) 'RC = , CONHTR/CONFLD
    write(36,*) 'W/H1 = ',DEPTH/H1
    write(36,*)
C
C***PREPARE PLOTTING DATA***
C NTIME=TOTAL NUMBER OF TIME STEPS
C ITIME=CURRENT TIMESTEP
    NTIME=1
    write(46) NTIME,M1,L1
C
    PRINT DATA FOR GRID
    write(46) (YV(J),J=2,M1)
    write(46) (XU(I),I=2,L1)
    write(46) (Y(J),J=1,M1)
    write(46) (X(I),I=1,L1)
C
C PRINT DATA FOR DEPENDENDT VARIABLES
    ITIME=1
    write(46) ITIME
    DO 3001 I=1,M1
    3001 write(46) (V(J,I),J=1,L1)
    DO 3021 I=1,M1
    3021 write(46) (U(J,I),J=1,L1)
    DO 3031 I=1,M1
    3031 write(46) (T(J,I),J=1,L1)
    DO 3041 I=1,M1
    3041 write(46) (P(J,I),J=1,L1)
    DO 3051 I=1,M1
3051 write(46) (STO(J,I),J=1,L1)
    DO 3061 I=1,M1
3061 write(46) (F(J,I,3),J=1,L1)
    DO 3071 I=1,M1
3071 write(46) (IBODY(J,I),J=1,L1)
    close(46)
C
C
    RETURN
ENTRY GAMSOR
```

```
    IF(NF.EQ.3) RETURN
    DO }500\textrm{J}=1,\textrm{Ml
    DO 500 I=1,L1
    GAM(I,J)=AMU
    IBODY(I,J)=1
    IF(NF.NE.4) GO TO 500
    GAM(I,J)=AMUP
500 CONTINUE
    DO 501 I=NA,NB
    DO 501 J=NC,ND
    GAM(I,J)=1.OE5
    IBODY(I,J)=0
    IF(NF.NE.4) GO TO 501
    GAM(I,J)=GAM2
501 CONTINUE
    IF(NF.NE.2) GO TO 503
    DO 502 J=2,M2
    DO 502 I=2,L2
    IF(J.EQ.2)GO TO 502
    TM=(FY(J)*T(I,J)+FYM(J)*T(I,J-1))
    CON(I,J)=ALFA*TM+ALFAM*STO(I,J)
    STO(I,J)=TM
502 CONTINUE
503 CONTINUE
    IF(NF.EQ.4) THEN
    DO 505 J=1,N4X
    DO }505\textrm{I}=0,\textrm{N}3\textrm{Y}-
        GAM(NQX-N4X+J,NQY1+I)=GAM4
        CON(NQX-N4X+J,NQY1+I)=SOURCE
505 CONTINUE
    ELSE
    ENDIF
    RETURN
    END
```


APPENDIX B
 CONTOUR PROGRAM

```
Clol
    K .... CURRENT NUMBER OF TIME STEP BEING READ
    NT ..... TOTAL NUMBER OF TIME-STEFS ON DATA FILE
    NPTS ... TOTAL NUMBER OF POINTS (IHPUT)
        NTYP ... CURVE-TYPE
            PRESSURE
                STREAMFUNCTION
                    U-VELOCITY
                    V-VELOCITY
                        PRESSURE
            COMMON /INDATA, X(102),Y(102),Z(102,102)
            COIMMON /GRIDII/ XX(200),YY(200)
            COP1MOH/PLOTDT/ XPAGE,YPAGE, XPLOT,YPLOT
            COMMON GBODCTR/ XCT(102),YCT(102), XBL(102),YBL(102),NCT
            COMMION HRK (2000O)
            DIMENSION XI(10404),Y1(10404),Z1(10404),ZZ(200,200)
            DIMEHSIDN U(102,102),V(102,102),T(102,102),P(102,102),
            2
            2 DIMENSION XUODY(102,102),ST1(102,102),ST2(102,102)
            DIMENSION XU(101),YV(101)
            REAL*8 XARRAY(102)
            CHARACTEREI IDECI
            LOGICAL ZERO,COHT,ZERI,CONTI
C
    DEFINE SCME FUNCTIONS
        ZERO(II,JJ) = ABS(U(II,JJ)).LT.O.1E-10 .AND.
    2 ABS(V(II,JJ)).LT.O.1E-10
    CONT(II,JJ)=(ZERO(III+1,JJ+1).AND.ZERO(III+1,JJ-1).AND.
    2 (HNT(II,JJ)=(ZERO(II+1,JJN+I).AAND.ZERO(II-I,JJ-1); AND
    ZERI(II,JJ) = IBODY(II,JJ).EQ.O
    COHTI(II,JJ)=(ZERI(II+1,jJ+i).AHD.ZERI(II+1,JJ-1).AND.
    2 ZERI(II-1,JJ+1).AND.ZERI(II-1,JJ-1))
    .NEQV. (ZERI(II+I,JJ+1).OR.ZERI(III+I,JJ-I).OR
ZERI(II-1,JJ+1).OR.ZERI(II-1,JJ-1))
    DEFINE PAGESIZE AND FLOTSIZE ***
    XPAGE = 9.5
    YPAGE = 11.0
    XPLOT = 6.5
    YPLOT = 6.5
C
    *x* READ DATA FOR GRID ***
        870 REHIHD (3)
            READ (3) NT,L1,MI
            READ (3) (XARRAY(I),I=2,LI)
    DO }8002I=2,L
    8002 XJJ(I) = SNGL(XARPAY(I))
        READ (3) (XARRAY(J),J=2,MI)
    DO 8004 J=2,N1
    8004 YV(J) = SNGL(XARRAY(J))
        READ (3) (XARRAY(I),I=1,L1)
        DO 8006 I=1,L1
    8006 X(I) = SNGL(XARRAY(I))
    READ (3) (XARRAY(J),J=1,M1)
    DO }8008\textrm{J}=1,M
8008 Y(J) = SNGL(XARRAY(J))
C
    PREPARE THE GRID-DATA FOR THE CONTOUR PLOTTING
    NPTS = LI#MI
    DO 1300 J=1,M1
        DO 1300 1=1,L1
        J1=L1*(J-1)+1
1300
    XI(J1) = X(I)
    DO 1310 J=1,M1
    DO 1310 1=1,L1
    JI=LI*(J-I)+I
```

```
1310 Y1(Jl)= Y(J)
C *** NOMINATE DEVICE Ex*
C
    WRITE (*,930)
    930 FORMAT (1H1, 34(1HX)/1X,'PLEASE, SELECT PLOTTING DEVICE'/1X,34(1HX
        2 % /5X,'TEKTRONIX 618 SCREEN ..... (1):'
        3 3 ( 
                        5X,'COMPRESSED METAFILE ..... (4)'/
                        5X, EXIT PLOTTIIIG ...........(99)')
            READ (*,*) IPLOT
            IF ((IPLOT.LT.1).OR.(IPLOT.GT.4)) GOTO 180
            IF (IPLOT.EQ.I) CALL TEKG18
            IF (IPLOT.EQ.2) CALL SHERPA ('CONTOUR `,'T',2)
            IF (IFLOT.EQ.3) CALL IBM79
            IF (IPLOT.EQ.4) CALL COMPRS
C
C mxx GET THE NUMBER OF TIME-STEPS TO BE PLOTTED AND THE INCREMENT ***
    WRITE (*,910) NT
    910 FORMAT (1H1,39(1H*)/,
        2 IX, YOUR IHPUT FILE INCLUDES ',IJ,' TINE-STEFS'/1X, 39(1H*)//
        2 IX,'YOUR IHPUT FILE INCLUDES 'IIJ,' TIME-STEFS'/IX,39(1H
        5x, UNIFORM GRID/NO REFINEMENT (102*102)..... (0)',
        5X,'DISSPLA''S GETMAT ALGORITH&'(102*102)..... (1)'/
        5x,'CUBIC SPLINE INTERPOLATION (102*102)..... (2)'/
                5X,'LINEAR INTERPOLATION (200*200).............(3)')
            READ (*,*) IMAT
            IF (IMAT.NE.O) GOTO 202
            LL = Ll
            MM = M11
        GOTO 204
    202 HRITE (*,911)
    g11 FORHAT (IX,'ENTER THE DIMENSIONS OF THE MATRIX TO BE CONSTRUCTED:'
        2 ,' (IXDIM,IYDIM)')
            READ (*,*) LL,MM
C GENERATE AN EQUALLY SPACED GRID
    204 DE{X = X(LI)-X(1)
        DELY = Y(ML)-Y(1)
        DO 206 I=1,LL
    206 XX(I) = X(1)+ DELX*FLOAT(I-1)/FLOATYLL-1)
        IO 208 J=1,MM (J) Y(I) + DELYMFLOAT(J-1)/FLOAT(MM-1)
    208 YY(J) = Y(1) + DELY*FLOAT(J-1)/FLOAT(MM-1)
C
        DO 200 N=1,NT
        READ (3) K
        WRITE (*,912) K
    912 FORMAT (%/1X,'DO YOU WAHT ANY PLOTS FOR THE ',I3,
        '-TH TIME-STEP? (Y/H)')
        READ (*,914) IDECl
    914 FORMAT (A1)
        IF (IDECI.EQ.'Y') GOTO 212
C ADVANCE BY I TIME-STEP
        DO 210 I=1,6
    210 READ (3)
        GOTO 200
C READ DEPEHDENT VARIABLES FROM FILE 3
    212 DO 213I=1,L1
        READ (3) (XARRAY(J),J=1,MI)
        DO 213 J=1,M1
    213U(I,J) = SNGL(XARRAY(J))
        DO 214 I=1,L1
        READ (3) (XARRAY(J),J=1,M1)
        DO 214 J=1,M1
    214 V(I,J) = SNGL(XARRAY(J))
        DO 215 I=1,11
        READ (3) (XXARRAY(J),J=1,M1)
        DO 215 J=1,M1
    215 T(I,J) = SNG((XARRAY(J))
    DO 216 1=1,l1
    READ (3) (XARRAY(J),J=1,M1)
```

```
        DO 216 J=1,M1
    216
        P(I,J) = SNGL(XARRAY(J))
        DO 217 I=1,LI
        READ (3) (XARRAY(J), J=1,M1)
    DO 217 J=1,M1
    217 ST1(I,J) = SNGL(XARRAY(J))
    DO 218 I=1.L1
    READ (3) (XARRAY(J), J=1,M1)
    DO 218 J=1,M1
    218 ST2(I,J)= SNGL(XARRAY(J))
    DO 219 I=1,11
    219 READ (3) (IBODY(I,J),J=1,M1)
    IF (N.NE.1) GOTO 890
    WRITE (*,939)
    939 FORMAT (fIX, SHOULD THE CONTOUR OF THE BODY BE IDENTIFIED VIA:'/
    2 6X,'THE VELOCITIES ......... (1)'/
    3NEAD (* 6X,'THE INPUT DATA ......... (2)')
    READ (*,*) ICONT GOTO 1500
C
C LOCATE A CONVEX CORNER OF THE BODY
    DO 1320 J=4,MI-3
    IF (ZERO(I,J)) GOTO 1322
    1320 CONTINUE
    1322 ICT = 1
    XCY(ICT) = X(I)
    YCT(ICT) = Y(J)
    IP = 1
    jP = 0
    DO 1340 ICT=2,102
    DO 1324 IDUM=1,MAX(L1,M1)
    IF (ZERO(I+IP,J+JP).AND.CONT(I+IP,J+JP)) GOTO 1330
    IF (IP.EQ.O) THEN
        JP = 0 I IP =-1, 1,
    1326 IF (ZERO(I+IP,J+JP).AND.CONT(I+IP,J+JP)) GOTO 1332
    ELSE
        IP = 0
        DO 1328 JP =-1,1,2
    1328 ENF (ZERO(IFIP,J+JP).AND.CONT(I+IP,J+JP)) GOTO 1332
C ANOTHER CONTOUR POINT HAS BEEN FOUND
    1330I=I+IP
    J=J+JP
    1324 CONTINUE
C THE PREVIOUSLY FOUND POINT IS A CORHER
    1332 XCT(ICT) = X(I)
    YCT(ICT)=Y(J)
    2 (ABS(XCT(ICT)-XCT(1)).LT.0.1E-6.AHD
    I=I+IP
    I}=\mp@code{J+1P
    1340 CONTINUE
    1350 RCT = ICT
    GOTO 1400
C
    LOCATE A CONVEX CORNER OF THE BODY
    1500 DO 1520 J=4,MI-3
    DO 1520 I =4,LI-3
    1F(ZERI(I,J)) GOTO 1522
1520
    CONTINUE
1522
    ICT = 1
    XCT(ICT) = X(I)
    YCT(ICT) = Y(J)
    IP}=
    JP}=
    DO 1540 ICT =2,102
```

```
    DO 1524 IDUM=1,MAX(LI,M1)
    IF (ZERI(I+IP,J+JP).AHD.CONTI(I+IP,J+JP)) GOTO 1530
    IF (IP.EQ.0) THEN
        JP = 0
        DO 1526 IP =-1,1,2
    1526
        ELS
        IP=0
        DO 1528 JP=-1,1,2
    1528 IF (ZERI(I+IP,J+JP).AND.CONTI(I+IP,J+JP)) GOTO 1532
    ENDIF
C ANOTHER CONTOUR POINT HAS DEEN FOUND
    1530I = I+IP
        J= J+JP
    1524 CONTINUE
C THE PREVIOUSLY FOUND POINT IS A CORNER
    1532 xCT(ICT) = X(I)
        YCT(ICT) = Y(J)
        IF (ABS(XCT(ICT)-XCT(1)).LT.0.1E-6.AND.
        2, ABS(YCT(ICT)-YCT(I)).LT.O.1E-6) GOTO 1550
            I=I+IP
    1540 CONTINUE
    1550 NCT = ICT
C
COMPUTE THE COORDINATES FOR BLAHKING (IN INCHES FROM PHYSOR)
1400 DO 1410 ICT=1,NCT
    XBL(ICT) = (XCT(ICT)-X(1))/(X(LI)-X(1))*XPLOT
    1410 YBL(ICT) = (YCT(ICT)-Y(1))/(Y(M1)-Y(1))*YYLOT
c
C *** FIND OUT WHICH CURVES TO PLOT %**
    890 WRITE (*,900)
    900 FORMAT (1H1, 'UHAT WOULD YOU LIKE TO PLOT?',
        2 2x, \TEMPERATURE................(1):',
                        5X,'U-VELOCITY .....................(3)''
                        5x,'V-vELOCITY ....................(4)'/
                        5x,'PRESSURE ................... (5)''
                        5X,'NEXT TIMESYEP...............(0)',
                        5x,'RE-INITIAIISE .............-(-99)!'
                            5X,'EXIT PLOTTING ........(-99)(99),)
            READ (x,*)'NTYP
        IF (NTYP.EQ.99) GOTO 180
        IF (NTYP.EQ.-99) GOIO 870
        IF (NTYP.EQ.O) GOTO 200
C
    assign the values of the z-function with the chosen data
        G01O (1100,1102,1104,1106,1108) NTYP
C TEMPERATURE
    1100 DO 1101 J=1,M1
        DO 1101 I=1,LI
        11012(I,J)=T(I,J)
        GOTO 1120
C STREAMFUHCTION
1102 DO 1103 J=1,M1
        D0 1103 I=1,L1
    1103 2(I,J)=ST2(I,J) +.0005222
        GOTO1120
C U-VELOCITY
    1104 D0 1105 J=1,M1
        DO 1105, I=1,L1
    1105 Z(I,J)=U(I,J)
        GOTO 1120
c v-velocity
    1106 D0 1107 J=1,M1
        DO 1107,1=1,M1
    1107 2(I,J) = V(í,J)
GOTO 1120
C PRESSURE
    1108 DO 1109 J=1.M1
        DO 1109 I=1,L1
```

```
1109 Z(I,J) = P(I,J)
C COMPUTE AND DRAW CONTOUR-LINES
    C1120 CALL CONTDD (NTYP,IMAT,X1,Y1,Z1,ZZ,L1,M1,L1#M1,LL,MM)
        GOTO 890
C 200 continue
C END END OF "200-LOOP"
c
    180 CALL DONEPL
    STOP
```



```
x
    SUBROUTINE CONTDD (NTYP,IMAT,X1,Y1,Z1,ZZ,L1,M1,NFTS,LL,MM)
* THIS SUBROUTINE COMPUTES A REGULAR MATRIX CON AN EQUALIY SPACED
* GRID) EITHER BY DISSPLA'S GETMAT-ALGORITHHA OR BY A CUBIC SPLINE
* INTERPOLATION. SUBSEQUENTLY CONTOUR-LINES ARE DRANH.
|
C
    COMMON /BODCTR/ XCT(102),YCT(102),XBL(102),YBL(102),NCT
    COM110N INDATA/ X(102),Y(102),Z(102,102)
    COMMON GRIDII/ XX(200),YY(200)
    COMMON /PLOTDT/ XPAGE,YPAGE,XPLOT,YPLOT
    COMMON WRK (20000)
    DIMENSION XI(NPTS),Y1(HPTS),ZI(HPTS),ZZ(LL,MN)
    DIMENSION ZI(200,200),C(4.102)
    CHARACTERXIL LCONT,LGRID
C
C C** INPUT THE IMCREMENT BETMEEH CONTOUR LEVELS ***
    WRITE ( }x,900
    900 FORMAT (IX,'SHOULD DISSPLA PICK THE INCREMEHT BETWEEN COHIOUR ',
    2 'LEVELS? (Y/N)')
        READ (*,9jo) LCONT
    910 FORMAT (A1)
            IF (LCONT.EQ.'Y') GOTO 925
            WRITE(*,920)
    920 FORMAT (1X,'INPUT THE INCREMENT BETWEEN CONTOUR LEVELS:')
    READ (*)*) ZINCR
    925 WRITE (*,930)
    930 FORMAT (IX,'DO YOU WART A GRID TO BE DRANN? (Y/N)')
    READ (*,910) LGRID
C
C #** SET UP ALPHABET K
            CALL RESET ('ALL')
            CALL SWISSM
            CALL HINSHD
            CALL CHRPAT(16)
            CALL BASALF (IL/CSTD')
            CALL MIXALF ('STAND')
            CALL SETCLR ('BLUE')
C CALL SHDCHR(90.,1,.002,1)
C
*** DEFINE PLOT AREA **X
    CALL PAGE (XPAGE,YPAGE)
    IF (IPLOT.EQ.1) CALL HWSCAL ('SCREEN')
    CALL PHYSOR (1.25,1.0)
    CALL AREAZD (YPLOT,XPLOT)
C
C %X* TEMPORARY FIX FOR CONTOURING PROBLEMS
            I=10
            IFI=1
    CALL THKFRM (.01)
C
C %M共 LABEL AXES ##*
    CALL HEIGHT (0.18)
    CALL SETCLR ('GREEN')
```

```
        IF (NTYF.EQ.l) CALL HEADIN ('(T)EMPERATURE (C.)OHTOURS$',
        l IF 100,1.5,i)
        IF (NTYP.EQ,2)
        IF (HTYFEO
        1 100,1.5.1)
        IF (NTYF.EO.4)
        l 100,1.5,1)
        IF (NTYP.EQ.5) CALL HEADIN ('(P)RESSURE (C)ONTOURSS'
        CALL RESET ('HEIGHT')
        CALL SETCLR ('BLUE')
C
*** SET UF AXES ***
    CALL XNAMME ('Y $',100)
    CALL YAXANG (0.0)
    CALL YNAME ('X $',100)
    XINC = 0.1*(X(LI)-X(I))
    YINC = O.IX(Y(MI)-Y(1))
    CALL GRAF
    CALL GRID (0,0)
    CALL BCOMON (20000)
C DRAN A GRID (IF REQUESTED)
            IF (LGRID.EQ.'N') GOTO }9
            DO 30 I=1,L1
        30 CALL RLVEC (Y(1),X(I),Y(MI),X(I),0000)
        DO 32 J=1,M1
    32 CALL RLVEC (Y(J),X(1),Y(J),X(M1),0000)
C
*x* PREPARE CONTOURS PLOTS ***
    90 GOTO (100,200,300) IMAT
C C.* INPUT MATRIX IS REGULAR / NO GRID REFINEMENT REQUIRED ***
    DO 10 J=1.MM
    10ZZ(I,J)=2(J,I)
    GOTO 400
C
C mxx CONSTRUCT THE MATRIX BY DISSPLA'S ALGORITHM GETMAT 秋㑒
C TRANSFORM THE Z 2-D FUNCTION TO 1-D FUNCTION
    100 DO 110 J=1,M1
        DO 110 I=1,L1
        J1=11*(J-1)+I
    110 Z1(J1) = Z(I,J)
C CONSTRUCT A REGULAR MATRIX
    CALL BGNMAT (MM,LL)
    CALL GETMAT(Y1,X1,Z1,NPTS,0)
    CALL ENDMAT(ZZ,O)
    GOTO 400
C
    200 DO 210 J=1,M1
    DO 212 I=1,L1
    212C(1,I)= Z(I,J)
        CALL CUBSFL (X,C,L1,0,0)
        DO 214 I=1,LL
    214 Z1(I,J) = PPVALU (X,C,L1,4,XX(I),0)
    210 CONTINUE
C
    DO 220 I=1,LL
    222 DO 222 J=1,MM1, (1, J) = Zi(I,J)
        CALL CUBSPL (Y,C,M1,O,O)
        DO 224 J=1,MM
    224ZZ(J,I) = PPVALU (Y,C,M1, 4,YY(J),0)
    220 CONTIHUE
    GOTO 400
```

```
C
C
    300 DO 310 J=1,Ml
        DO 310 1=1,1i
        CALL INTERV (X,LI,XXCI),LEFT,MFLAG)
    310ZZI(I,J)= Z(LEFT,J) + (Z(LEFT+1,J)-Z(LEFT,J))*(XX(I)-X(LEFT))/
        2 (X(LEFT+1)-X(LEFT))
C
        DO 320 I=1,LL
        DO 320 J=1,MM
        CALL INTERV (Y,MI,YY(J),LEFT,MFLAG)
    320 ZZ(J,I) = ZI(I,LEFT) +(ZI(I,LEFT+I)-ZI(I,LEFT))*(YY(J)-Y(LEFT)),
    2)}(Y(LEFT+1)-Y(LEFT)
C
C m** DRAW THE BODY CONTOUR AND BLANK THE IHSIDE ***
    400 CALL LINEAR
    CALL SETCLR ('CYAN')
    CALL THKCRV (0.025)
    CALL CURVE (YCT,XCT,NCT,O)
    CALL RESET ('THKCRV')
    IF (NTYP.EQ.I .OR. LGRID.EQ.'Y') GOTO 410
C CALL SHADE (YCT,XCT,HCT,45...1,1,0,0)
CALL BLPOLY (YBL,XBL,NCT,1)
C
    410 CALL HEIGHT (0.12)
    CALL SETCLR ('RED')
    IF (LCOHT.EQ.'Y') CALL CONMAK (ZZ,MM,LL,5HSCALE)
    IF (LCONT,EQ.'N') CALL COPMMAK (ZZ,NMM,LL,ZINCR)
    CALL CONLIN(0,5HSOLID,6HLABELS,1,5)
C
C *xx DRAN CONTOUR LINES ***
    CALL COHANG(135.)
    CALL COHMIN(1.5)
C CALL RASPLN(0.25)
    CALL CONTUR(1,6HLABELS,4MDRAN)
    CALL RESET ('THKCRV')
C TERMINATE THE CURRENTLY DISPLAYED GRAFH
            CALL ENDGR(0)
            CALL ENDPL(0)
            RETURH
            END
```



```
C
            SUBROUTINE CUBSPL (TAU,C,N,IBCBEG,IBCEHD)
C THIS SUBROUTIME COMPUTES THE CUBIC SPLINE INTERPOLANT FOR
C DIFFERENT BOUNDARY CONDITIONS.
C SOURCE: CARL DE BOOR, A PRACTICAL GUIDE TO SPLINES
C
```



```
C C TAU ....... ABSCISSAE OF THE DATA POINTS
C C TAU ...... ABSCISSAE OF THE DATA POINTS
    IBCBEGG .... INDICATOR OF BOUNDARY CONDITION AT TAU(1)
    IBCBEG=O: NOT-A-KNOT-CONDITION
    IBCBEG=1: PRESCRIBED SLOPE
    IBCBEG=2: PRESCRIBED SECOHD DERIVATIVE
    IBCEND .... INDICATOR OF BDUNDARY CONDITIDH AT TAU(H)
    C(J,I) .... POLYNOMIAL COFFFICIENTS OF SPLINE IHTERFOLANT
                    F(X)=C(1,I)+H*(C(2,I)+H*(C(3,I)+H*C(4,I)/3.)/2.)
        WHERE H = X - TAU(I)
    DIMENSION C(4,N),TAU(N)
C L =N-1
C COMFUTE N-1
```

```
C (C SERVES AS A TEMPORARY STORAGE)
    DO 10 M=2,N
    C(3,M) = TAU(M) - TAU(M-1)
    10C(4,M)=(C(1,M)-C(1,M-1))/C(3,M)
C
** CONSTRUCT FIRST EQUATI
    11 IF (N.GT.2) GOTO 12
    C NOT-A-KNOT COND AT LEFT END, AND N.EQ.2
    C(4,1) = 1.0
    C(3,1) = 1.0
    C(2,1) = 2.0*C(4,2)
    GOTO 25
    C NOT-A-KNOT COND AT LEFT END, AND N.GT. }
    12C(4,1)=C(3,3)
        C(3,1)=C(3,2)+C(3,3)
        C(2,1)=((C(3,2)+2.0*C(3,1))*C(4,2)*C(3,3)+C(3,2)**2*C(4,3))
        2
            GOTO }1
C
    SIOPE PRESCRIBED AT LEFT END
    15C(4,1)=1.0
        C(3,1) = 0.0
        GOTO }1
C
    16C(4,1)=2.0
        C(4,1)=2.0
        C(2,1)=3.0\timesC(4,2)-C(3,2)/2.0*C(2,1)
    18 IF (N.EQ.2) GOTO 25
C
    IN CASE OF INTERIOR KNOTS SET UP EQU, EXECUTE FORWARD FASS OF GAUSS
    19 DO 20 M=2,L
        G=-C(3,M+1)/C(4,M-1)
        C(2,M)=G*C(2,M-1)+3.0*(C(3,M)*6 .,M+1)+C(3,M+1)*C(4,M))
    20C(4,M)=G*C(3,M-1) + 2.0*(C(2,M) +C(3,M+1))
C
C
    IF (IBCEND-1) 21,30,24
    C FOR PRESCRIBED SLOPE ENTER DIRECTLY THE BACK SUBSTITUTION
    21 IF ((H.EQ.3).A.ID.(IBCEEG.EQ.0)) GOTO 22
C
C AND ((N.GT.3) OR. (NOT-A-XNOT COND AT LEFT END))
    G}=\textrm{C}(3,N-1)+C(3,N
        C(2,N)=((C(3,N)+2.0*G)*C(4,N)*C(3,N-1)
        2+C(3,N)**2*(C(1,N-1)-C(1,N-2))/C(3,N-1))/G
            G = -G/C(4,N-1)
            C(G,N)=C(3,H-1)
        GOTO 29
C NOT-A-KHOT COND AT RIGHT END, AND ((N.EQ.S).AND.(NOT-A-KNOT AT LEFT)
C .OR. ((H.EQ.2).AND.(NOT-A-KHOT COHD AT LEFT END))
    22C(2,N)=2.0*C(4,N)
        C(4,N)=1.0
        GOTO 28
    C
    DERIVATIVE PRESCRIBED AT RIGHT END
    24C(2,N)= 3.O*C(4,N) + C(3,N)/2.0*C(2,N)
        C(4,N) = 2.0
        GOTO 28
    25 IF (IBCEND-1) 26,30,24
    26 IF (IBCBEG.GT.0) GOTO 22
C
    NOT-A-KNOT COND AT RIGHT AND LEFT END, AND N.EQ. 2
        C(2,N)=C(4,N)
        GOTO }3
    28G = -1.0/C(4,N-1)
C C #m* SOLVE TRIDIAGONAL SYSTEM FOR THE SLOPES C(2,J) ***
```

```
C FORINARD PASS (=ELIMINATION OF LOWER DIAGONAL)
    29C(4,N)=G*C(3,N-1)+C(4,N)
    C(2,N)=(G*C(2,N-1)+C(2,N))/C(4,N)
C BACKNARD PASS (=BACK SUBSTITUTION)
    30 DO 40 J=L,1,-1
    40C(2,J)=(C(2,J)-C(3,J)xC(2,J+1))/C(4,J)
C
C C
    DO 50 I=2,N
    DTAU = C(3,I)
    DIVDF1 = (C(1,I) - C(1,I-1))/DTAU
    DIVDF3 = C(2,I-1) + C(2,I) - 2.0xDIVDF1
    C(3,I-1) = 2.0x(DIVDF1-C(2,I-1)-DIVDF3)/DTAU
    50C(4,I-1)=(DIVDF3/DTAU)*(6.0/DTAU)
    RETURH
    END
```



```
    REAL FUNCTION PPVALU (BREAK,CDEF,L,K,X,JDERIV)
C THIS FUNCTION CALCULATES THE VALUE OF THE JDERIV-TH DERIVATIVE
C OF A PIECEWISE POLYNOMIAL FUNCTIO:%.
C SOURCE: CARL DE BOOR, A PRACTICAL GUIDE TO SPLINES
```



```
C C
    COEF ..............NOEFFICIENTS OF PIEER OF BREAKPOINTS
    L ..............NUNIDER OFDER OF POREAKPOINITS SUNINL FUNCTIONS
    x .......... ABSCISSA AT WHICH TO EVALUATE
    JDERIV`...... ORDER OF DERIVATIVE (0 = FUHCTION)
    DIMENSION BREAK(L),COEF(K,L)
C
    PPVALU = 0.0
    FMMJDR = K - JDERIV
C DERIVATIVES OF ORDER K OR HIGHER ARE IDENTICALLY ZERO
IF (FMH1JDR.LE.O.0) GOTO 99
C IF (L.EQ.1) THEN
C SINGLE POLYNOMIAL FUNCTION
    I}=
C FIND INDEX I OF LARGEST BREAKPOINT TO THE LEFT OF }
    CALL INTERV (BREAK,L,X,I,NDUMMY)
    ENDIF
    H = X - BREAK(I)
C EVALUATE JDERIV-TH DERIVATIVE OF I-TH POLYNOMIAL PIECE AT }
    DO 10 M=K,JDERIV+1,-1
    PPVALU = (PPVALU/FMMJDR)*H + COEF(M,I)
    10 FMMJDR = FIAIJDR - 1.0
C }99\mathrm{ RETURN
    END
```



```
    SURROUTINE INTERV (XT,LXT,X,LEFT,MFLAG)
C THIS SUBROUTINE DETERMINES THE INTERVAL INDEX WITH RESPECT
C SOURCE: CARL DE BOOR, A PRACTICAL GUIDE TO SPLINES
```



```
C
```

```
\ LXT ........ NUMBER OF BREAKPOINTS 
    MFLAG........ RETURN CODE: MFLAG =-1: X.LT.XT(1)
    MFLAG = 0: Xi(1).LE.X.LT.XT(LXT)
    MFLAG = 1: X.GE.XT(iXXI)
    DIMENSION XT(LXT)
c
    recall the index of the previdus call to this subroutine
    SAVE ILO
    data ILO/l/
    IHI= ILO+1
    IF (IHI.LT.LXT) GOTO 20
    IF (X.GT.XT(LXT)) GOTO 110
    IF(LXT.LE.1) GOTO 90
    1LO = LXT -1
    IHI = LXT
C
    20 IF (X.GE.XT(IHI)) GOTO 40
    IF (X.GE.XT(ILO)) GOTO 100
C
    dECREASE IlO to capture
        ISTEP = 1
    31 1HI = ILO
        ILO = IHI-ISTEP
        IF (ILO.LE.1) GOTO 35
        IF (X.GE.XT(ILO)) GOTO 50
        ISTEP = ISTEP*2
        GOTO }3
    35110=1
        IF (X.LT.XT(1)) GOTO 90
OOTO 50
C INCREASE IHI TO CAPTURE }
    40 ISTEP = I
    41 ILO = IHI
        IHI = ILO + ISTEP
        IF (IHI.GE.(XT) GOTO 45
        IF (X.LT.XI(IHI)) GOTO 50
        ISTEP = ISTEP*2
        GOTO 4l
    45 IF (X.GE.XT(LXT)) GOTO 110
        IHI = LXT
C
    NARPOW THE INTERVAL (XT(ILO),XT(IHI))
    50 MIDDLE = (ILO + IHI)/2
        IF (MIDDLE.EQ.ILO) GOTO 100
        IF (X.LT.XT(MIDDLE)) GOTO 53
        ILO = MIDDLE
        GOTO 50
    53 IHI=MIDDLE
        GOTO 50
C
C X lies to the left of the smallest breakpoimt
    90 MFLAG = -1
        LEFT = 1
        RETURN
C REGULAR RETURN FROM THIS SUBROUTINE
    100 MFLAG = O
        LEFT = 1LO
        RETURIG
C X liES to the right of the largest breakpoint
    110 MFLAG = 1
        LEFT = \XT-1
        RETURH
        END
```


APPENDIX C TRAVERSE PROGRAM

```
1 0
20
30
31
32
4 0
4 2
4 3
4 4
46
4 7
4 9
50
52 OUTPUT @Datacomm;"ELT"
53 OUTPUT @Datacomm;"C S1000,SM2000,I1500,IM1500.R"
54 END
```


APPENDIX D

TEMPERATURE ACQUISITION PROGRAM


```
!Qg AEKT !
Eこ\Omega !!!!!1!!!!!!!!!!!!!!!!!!!!!! SUPFACE #2!-$40
5Ea OUTPUT 7eg;"CONFMEAS DCU,200-219,USE Q"
550 FOR I=2! TO 40
570 ENTER 709;volte(I)
```



```
2!952034.3364*(Vol!5!!)^3)!+(93708!0996.1974*(U01!5(I)^4!)+.030
Sge NEXT I
60g 1!1!11!!!1!11!1111!!1111!!1 SURFAC $4!-$45
6I0 OUTPUT 709;"CONFMEAS DCU.300-304,USE 0"
E20 FOR I=41 TO 45
9EE ENTEP 709;WO!ts(I)
```



```
geg NEXT I
9?@ I|l PRINT OUTPUT TEMPERATURES
8?g PPINT * "
gg0 FOR I= TO 45
Qg: PRINT "HEATEP *";!," TEMPE员TURE IN OEE. C=":TemP(I)
EQ2 NEXT I
gez louTPUT GCathz:Temp(*)
ge4 PRINT - "
EgS PRINT " "
```

```
gE: PETNT
GEE CETAT GKTH TEMPERATUSEE STOF TC EGTTOK:
```



```
!0こ0 FOF I=5? TO 5@
!0ja ENTEE 70Q;U0!ts:I!
```



```
!OSQ PFI!T TEMF. CEE. E ";Tempil!
10ED NE:T I
!O-S ENE
```


APPENDIX E

UNIFORM POWER PROGRAM

978 OUTPUT 709:"R5T"
979 OUTPUT 709;"CONFMEAS DCU,400-401,USE 0"
980 FOR I=47 TO 48
981 ENTER 709:Volts(I)
982 NEXT I
983 OUTPUT 709:"RST"
985 OUTPUT 709;"CONFMEAS DCU,50J-517,USE 0"
985 FOR I=24 TO 38
987 ENTER 709;Volts(I)
989 NEXT I
992
991 OUTPUT 709;"CONFMEAS DCU,500-501,USE 0"
992 FOR I=49 TO 50
g93 ENTER 709:Volts(I)
994 NEXT I
995 OUTPUT 709:"RST"
997 OUTPUT 709,"CONFMEAS DCU,602-608, USE 0"
998 FOR I=39 TO 45
999 ENTER 709:Volts(I)
1000 NEXT I
1001 OUTPUT 709:"RST"
1002 OUTPUT 709,"CONFMEAS DCU,600.USE 0"
1003 ENTER 709, Volts(51)
1004 OUTPUT 709,"RST"
1005 PRINT"*
1005 PRINT ".
1050 PRINT "INPUT VOLTAGE D.C. VOLTS PAN I":Volts(46)
1051 PRINT "INPUT VOLTAGE D.C. VOLTS PAN 2":Volis(47)
1052 PRINT "INPUT VOLTAGE D.C. VOLTS PAN 3":Volts(48)
1053 PRINT "INPUT VOLTAGE D.C. VOLTS PAN 4"ivolis(49)

1054	PRINT "INPUT VOLTAGE D.C. VOLTS PAN 5*iVolts(50)
1055	PRINT -INPUT VOLTAGE D.C. VOLTS PAN G"iVolts(5)
1050	PRINT
1070	PRINT
1080	Resist=2.0
1109	R2=Resist*Resist
1119	Pow(2)=(Volts(46)-Volts(2)) (Volts(2)*(Resist+.4)-Volts(46).4)/R2
1149	Pow(5)=(Volts(46)-Volts(5) \% (Volts(5)*(Restst+.2)-Volts(46)*.2)/R2
1179	Pow (9)=(Volts(47)-Volts(9)) - (Volts(9)*(Resist+.3)-Volts(47)*.3)/R2
1189	Pow (10) = (Volts (47)-Volts(10) \% (Volts (10) - (Resist+.45)-Volts(47)*.45)/R2
1194	Pow (18) $=($ Volts $(48)-$ Volts (18)) (Volts (18) - (Resist+.55)-Volts (48)*.55)/R2
1197	Pow (23) = (Volts (48)-Volts(23) * (Volts (23)*(Resist+.55)-Volts (48)*.55)/R2
1198	Pow (24) =(Volts(49)-Volts(24))*(Volts(24)*(Restst+.1)-Volts(48)*.1)/R2
1199	Pow 25) $=($ Volts (49)-Volts(25)) (Volts(25)*(Resist+.3)-Volts (48)*.3)/R2
1238	Pow(29)=(Volts(49)-Volts(29)) * (Volts(29)*(Resist+.45)-Volts(49)*.45)/RE
1241	
1243	Pow (34) = (Volts(50)-Volts 34)) (Volts 34) * (Resist+.3)-Volts(50)*.3)/R.2
1244	Pow (35)=(Volts(50)-Volts(35))*(Volts (35)*(Restst+.6)-Vodts (50)*.6)/R2
1245	Pow (36$)=(\operatorname{Volts}(50)-\operatorname{Volts}(36))$ (Volts (36)*(Resist+.6)-Volts(50)*.6)/R2
1246	
1247	
1248	
1250	
1251	Pow(43)=(Voltsi51)-Volts(43) *(Volts(43)*(Resist+.45)-Volts(5) \% . $451 / \mathrm{R}$ (
1252	Pow(44)=(Volts(51:-Volts(44) *(Volts(44)*(Resist+.55)-Volts(51)*.55:/F2
1281	Pow (2) $=($ Volts $(46)-$ Volts(2) $*($ Volts $(2) *(R e s i s t+.4)-V o l t s(46) * .4) / R 2$
1284	Pow(5) $=(\operatorname{Volts}(46)-\operatorname{Volts}(5)) *(\operatorname{Volts}(5) *(R e s i s t+.2)-\operatorname{Volts}(46) \cdot .2) / R 2$
1290	Pow(4)=(Volts(46)-Volts(4))*(Volts(4)*(Restst+.1)-Volts(46)*.1)/R2
1294	
1295	
1297	Pow(29)=(Volts(49)-Volts(29))*(Volts(29)*(Resist+.2)-Volts(49)*.こ)/R2
1298	Resist=1.972
1295	RE=Restst*Resist
1300	Powi 5) = (Volts! 47)-Volts(15) *(Volts(15)*(Resist+.2)-Volts(47)*.2)/R2
1301	Resist=1.9184
1302	R2=Resist*Resist
1303	Pow (14) = (Volts(47)-Volts(14))*(Volts(14)*(Restst+.1)-Volts(47)*.1)/R2
1304	Resist=1.886
1305	R2=Resist*Resist
1306	Pow(4)=(Volts(46)-Volts(4))*(Volts(4)*(Resist+.1)-Volts(46)*.1)/F2
1307	
1308	Pow(30) $=($ Volts(49)-Volts(30) $+(\operatorname{Volts}(30) *($ Ressst+.4)-Volts(49)*.4)/R2
1309	Resist=1.862
1310	R2=Resastoresist
1311	Pow(27)=(Volts(49)-Volts(27))*(Volts(27)*(Resist+.5)-Volts(49)*.5)/R2
1312	
1313	
1314	

```
1315 Rescst=1.852
1316 R2=Resist*Resist
1317 Pow(24)=(Volts(49)-Volts(24))*(Volts(i4)*(Resist+.1)-Volts(49)*.1)/R2
1318 Pow(33)=(Volts(50)-Volts(33))*(Volts(33)*(Resist+.7)-Volts(50)..7)/R2
1319 Resist=1.8353
1320 R2=Resast*Resast
1321 Pow(11)=(Volts(47)-Volts(11))*(Volts(11)-(Resist+.5)-Volts(47)*.5)/R2
1322 Pow(12)=(Volts(47)-Volts(12))*(Volts(12)*(Resast+.1)-Volts(47)*.i:iR':
1323 Pow(13)=(Volts(47)-Volts(13))*(Volts(13)*(Resist+.2)-Volts(47)*.2)iR2
1325 Pow(41)=(Volts(51)-Volts(41)).(Volts(4))*(Resist+.1)-Volts(51)*.1)/R2
1326 Pow(45)=(Volts(51)-Volts(45))*(Volts(45)*(Resast+.6)-Volts(51)-.6)/R2
1327 Resist=1.8182
1328 R2=Resist*Resist
1329 Pow(21)=(Volts(48)-Volts(21))*(Volts(21)*(Resist+.7)-Volts(48)*.7)/R2
1330 Resist=1.8
1331 R2=Resist*Resist
1332 Pow(8)=(Volts(46)-Volts(8))*(Volts(8)*(Resist+.2)-Volts(46)*.2)/R2
13E3 Pow(19)=(Volts(48)-Volts(19))*(Volts!19)*(Resist+.2)-Volts(48)., 2)/RE
1334 Pow(20)=(Volts(48)-Volts(20))*(Volts(20)*(Resist+.7)-Volts(48)*.7)/R2
1335 Pow(22)=(Volts(48)-Volts(22))*(Volts(22)*(Resist+.2)-Volts(40)*.2)/R2
1336 Resist=1.6567
1337 R2=Resist*Resist
1338 Pow(1)=(Volts(4E)-Volts(1))=(Volts(1)*(Resist+.3)-Volts(46)*.3)/R2
1339 Pow(3)=(Volts(45)-Volts(3))*(Volts(3)*(Resist+.7)-Volts(4E)*.7)/R2
1340 Pow(7)=(Volts(46)-Volts(7))*(Volts(7)*(Resist+.2)-Volts(4E)*.2)/R2
1341 Pow(16)=(Volts(48)-Volts(16))*(Volts(16)*(Resist+.4)-Volts(48)*.4)/R2
1342 Pow(17)=(Volts(48)-Volts(17))*(Volts(17)*(Resist+.4)-Volts(48)*.4)/R2
1343 Pow(26)=(Volts(45)-Volts(26))*(Volts(26)*(Resist+.2)-Volts(49)*.2)/R2
1344 FOR I=1 TO 45
1345 PRINT "BLOCK # ":I." POWER = ";POW(I)." WATTS"
1346 WAIT . }
1347 NEXT I
1348 Ptot=0
1345 FOR I=1 TO 45
1350 Ptot=Ptot+Pow(I)
1351 NEXT I
1352 Pavg=Ptot/45
1353 PRINT " "
1354 PRINT "AUERAGE POWER = ";Pavg," WATTS"
1355 PRINT " "
1355 FOR I=1 TO 45
1357 Perdif=ABSi(Pavg-Pow(I))/Pavg)*100
l358 PRINT "HEATER *";I," PERCENT DEUIATION ";Perd_f
1359 WAIT . }
1360 NEXT I
1361 END
```


APPENDDX \mathbf{F}

UNIFORM DATA REDUCTION PROGRAM

93 T (I) $=.0006797+(25825.1328 \cdot \operatorname{Volts}(I))-(607789.2467 *(V 01 t s(I) * V o l t s(I)))-(219$
52034.3364*(Volts(I)~3)) + (8370810996.1874*(Volts(I)^4))+.039
94 NEXT I
95 1!11111111111111111111111 SURFACE 21-\$40
96 OUTPUT 709;"CONFMEAS DCU,200-219,USE 0"
97 FOR I=21 TO 40
98 ENTER 709;Volts(I)

52034.3364.(Volts(I)^3))+(8370810996.1874•(Volts(I)^4))+.039
100 NEXT I
101 11111111111111111111111 SURFAC \$41-\$45
102 OUTPUT 709:"CONFMEAS OCU,300-304,USE 0"
103 FOR I=41 TO 45
104 ENTER 709;Voits(I)
$105 \mathrm{~T}(\mathrm{I})=.0006797+(25825.1326$-Volts(I))-(607789.2467*iVolts(I)*Volts(I)))-(2)s
52034.3364.(Volts(I)^3)) +(8370810996.1874.(Volts(I)^4)) .039
106 NEXT I

```
107 !!! PRINT OUTPUT TEMPERATURES
108 !PRINT * *
109 IFOR I=1 TO 45
110 !PRINT "HEATER *":I," TEMPERATURE IN DEG. C =":T(I)
11I !NEXT I
112 IOUTPUT OPathJ;T(*)
115 IPRINT * *
116 IPRINT " BATH TEMPERATURES (TOP TO BOTTOM)"
117 !PRINT * *
118 OUTPUT 709;"CONFMEAS DCU,317-319,USE 0"
119 FOR I-57 TO 59
120 ENTER 70s:Volts(I)
121 T(I)=.0006797+(25825.1328*Volts(I))-(607789.2467*(Volts(I)-Volts(I)))-(219
52034.3364*(Volts(I)^3))+(8370810996.1874*(Volts(I)^4))+.036
122 !PRINT "TEMP. DEG. C "IT(I)
124 NEXT I
126 T(22)=25
127 T(29)=25
133 IPRINT "INPUT AMBIENT TEMPERATURE"
134 Tamb=(T(57)+T(58)+T(59))/3
135 PRINTER 15 701
135 PRINT *
137 PRINT DATE$(TIMEDATE)
138 PRINT "DATA REDUCTION OUTPUT"
139 PRINT " "
140 PRINT "POWER :--N_ (WATTS) :",Power
141 PRINT
142 PRINT "SHRUL, POSITION (mm) :",Space$
143 PRINT
144 PRINT "AMEIENT TEMPERATURE (C) :",Tamb
145 PRINT
146 PFINT
147
148 'ASSIGN OFath TO Filenamem
14S IENTER OPathiT(*)
150 1
15: G=9.81
152 K.pg=.1421
153 Delx=.006731
154 As=.0239*.0078
155 Per=2*.0239+2*.0078
158 Lbar=As/Per
157 A$="Qcond"
158 BS="X/L"
159 C5="NDT"
160 D$="LOG(Nux)"
161 ES="LOG(Grx*)"
162 FS="DELT"
163 65="Hx"
164 HS="Nux"
165 Is="Grx*"
166 J5="Temp"
168 PRINTER IS CRT
```

```
    !!!!!!!!!!!!!!!!!!1!!!!!!1!!!!!!1!!!1!!!!!!!!!!!
    ! ENTER CONDUCTION LOSSES
    !!!!!!!1!!!!1!!1!1!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    PRINT "INPUT CONDUCTION LOSSES AS COMPUTED FROM ELLPACK"
    INPUT Qcond
    !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    CREATE BDAT Filename$,45
    ASSIGN OPath3 TO Filenames
    PRINTER IS 701
    FOR I=1 TO 45
    PRINT " "
    PRINT * *
    PRINT " SURFACE #".I
    PRINT * *
183 PRINT USING " 2X,AAAAA, 3X, AAA , 3X, AAA, ЗX, ARAAAAAA , 2X,GAARAAAAAA , 3X, AAAA , 4X, AA
4X,AAA, 3X,AAAA, 2X,AAAA";A$,B$,C$,D$,ES,F$,G$,H$,IS,J $ 
184 Qconv=Power-Qcond
185 Qflux=Qconv/As
186 Delt=T(I)-Tamb
187 Tfilm=273.15+(T(I)+Tamb)/2
188 Beta=(-7.944858E-8*(Tfilm^2))+(5.7358479E-5*Tfilm)-.0097810563
189 Spvol={4.69699E-9*(Tf11m^2))+(-2.5374SE-6.Tfilm)+.001341903
190 Dynvisc=(3.2348511E-7*(Tfilm^2))+(-.00021474487*Tfilm)+.056166792
191 Kinvisc=Spvol*Dynvise
192 Kf=(1.418181818E-3*Tf11m)+.1866
193 Pr=(4.65706E-3*(Tfalm^2))+(-2.922054*Tfilm)+465.3319
194 Thetal=Power/(.0220*kf)
195 Ndt1(I)=Deit/Thetal
196 Nd=Ndtl(I)
197 Temp=T(I)
199 Theta=QfIu**Lbar/Kf
200 Ndt(I)=Delt/Theta
201 Hx=Qflux/Delt
202 Grm=(6*Beta*Oflux*(Lbar)^4)/(Kf*Kınvasc^2)
203 Nux=Hx*Lbar/Kf
204 Lgr(I)=LGT(Grm)
205 Lnu(I)=LGT(Nux)
206 Lg=Lgr(I)
207 LnnmLnu(I)
209 Xt01=(31.75-(6.985+(1-16)*1.270))/31.75
210 PRINT USING " 1X,0.DODO, 2X,D.DOD,1X,D.DDD, 2X,D.DOD,5X,D.DDD,4X,DD,ODD, 2X,DO
OO.D,IX,OD.ODD,ODODD.D,IX,OD.OD";Qcond, Xtol,Nd,Lnm,Lg,Delt,H:,Nux,Grm,Temb
215 NEXT I
225 OUTPUT OPath3;T(*),Ndti(*),Ndt(*),Lnu(*),Lgr(*)
ZこG PRINTER IS CRT
235 END
```


APPENDIX G

NONUNIFORM POWER PROGRAM

 !!1!!!!!!1!!!1!!!!!111!!!!11!1!!!!1!!111!!!!!!!!!!!!!!!!!!!11!!1
 !!! POWER INPUT PROGRAM 1!!
 1!!!1!!11!!!!!!!!!!11!!1111!1!!!!!!!!!!!!!!!11!!!!!!1111111!1
 IOUTPUT 709;"LOCAL CLR"
 OUTPUT 709;"RST"
 REAL Volts(51)
 REAL Pow(51)
 REAL Ptot. Pavg.Perdif
 OUTPUT 709;"CONFMEAS DCU,308-315,USE 0"
 930 FOR I=1 TO \&
931 J=9-I
940 ENTER 709;Volts(J;
950 PRINT " "
QES NEXT I
953 OUTPUT 709;"RST"
954 OUTPUT 709;"CONFMEAS DCU,316,USE 0"
955 ENTER 709:VOlts(46)
95E OUTPUT 709;"R5T"
971 OUTPUT 709;"CONFMEAS DCU,403-417,USE 0"
972 FOR I=9 T0 23
97う ENTER 709:Volts(I)
97T NEXT I
97R OUTFUT 709;"RST"
979 OUTPUT 705;"CONFMEAS DCU,400-401.USE 0"
980 FOR I=47 TO 48
95! ENTER 709:VO1ts(I)
982 NEXT I
98ミ OUTPUT 709;"RST"
g95 OUTPUT 709;"CONFMEAS DCU,503-517,USE 0
986 FOR I=24 T0 38
987 ENTER 709;Volts(I)
SES NEXT I
990 OUTPUT 709;"RST"
991 OUTPUT 709;"CONFMEAS DCV,500-501,USE 0"
992 FOR I=49 T0 50
993 ENTER 709;Volts(I)
994 NEXT I
99E OUTPUT 709:"RST"
997 OUTPUT 709;"CONFMEAS DCU,602-608,USE 0"
998 FOR I=39 TO 45
999 ENTER 709;Volts(I)
1000 NEXT I
1001 OUTPUT 709:"RST"
1002 OUTPUT 709:"CONFMEAS DCU,600,USE 0"
1003 ENTER 709;Volts(51)
1004 OUTPUT 709;"RST"
1005 PAINT " "
100G PRINT * *
1050 PRINT "INPUT VOLTAGE D.C. VOLTS PAN I"iVolts(46)
105i PRINT "INPUT VOLTAGE D.C. VOLTS PAN 2",Volts(47)
1052 PRINT "INPUT UOLTAGE D.C. VOLTS PAN 3";Volts(48)
10SE PRINT "INPUT VOLTAGE D.C. VOLTS PAN 4",Volts(49)

```
1305 Pow(14)=(Volts(47)-Volts(14))(Volts(14)*(Restst+.1)-Volts(47)*.1)/RE
1304 Restst=1.886
1305 RI=Resist*Reshst
1 joe Pow(4)=(Volts(46)-Velts(4))*(Volts(4)*(Resist+.1)-Volts(46)*.1)/RE
130? Pow (6)=(Volts(4E)-VElts(E))*(Volts(G)*(Resist+.1)-Volts(4E)*.1)/R2

1309 Resist=1.862
1310 R2=ResisteResist
1311 Pow(27)=(Volts(49)-Volts(27))*(Volts(27)*(Resist+.5)-Volts(49)*.5)/R2
1312 Pow (28) \(=(\) Volts \((49)-V o l t s(28)) *(V o l t s(28) *(R e s t s t+0)-.V o l t s(49) * 0.) / R 2\)
1315 Pow(31)=(Volts(50)-Volts(31)) (Volts(31) (Restst+.65)-Volts(50)*.65)/RE
1314 Pow (38) \(=(\) Volts(50)-Volts(38)) (Volts(38)*(Restst+.3)-Volts(50)*. 3 )/R2
1315 Resist=1.852
1315 R2-Resist*Resist


1319 Resist=1.8333
1320 R2-Resist*Resist
1321 Pow(ll)=(Volts(47)-Volts(11))*(Volts(1) *(Resist+.5)-Volts(47)*.5)/R2
1シこ2 Pow(12)=(Volts(47)-Volts(12)) (Volts(12)*(Restst+.1)-Volts(47)*.1)/R2
132 Pow (13)=(Volts(47)-Volts(13)) (Volts(13)*(Restst+.2)-Volts(47) . 2 )/R2
1325 Pow(41)=(Volts(51)-Volts(41)) © (Volts(41)*(Restst+.1)-Volts(51)*.1)/F:
1326 Pow(45)=(Volts(51)-Volts(45)) (Volts(45)*(Restst+.E)-Volts(51)*.6)/R2
1332 Pow (8)=(Volts(46)-Volts(8))*(Volts(8)*(Resist+.2)-Volts(46)*.2)/R2
1333 Pow (19) =(Volts(48)-Volts(19) ) (Volts(19) (Resist4.2)-Volts(48) . 2 )/R2
1334 Pow (20) \(=(\operatorname{Volts}(48)-\operatorname{Volts}(20)) *(\operatorname{Volts}(20) *(\operatorname{Res} \operatorname{st+} .7)-V o l t s(48) * .7) / R 2\)
1335 Pow (22) \(=(\) Volts (48)-Volts(22))*(Volts(22) (Restst+.2)-Volts(48)*.2)/R2
1335 Resist=1.6657
1337 R2=Resist*Resist
1338 Pow(1)=(Volts(45)-Volts(1))*(Volts(1)*(Resist+.3)-Volts(46)*.3)/R2
1339 Pow(3)=(Volts(46)-Volts(3))e(Volts(3)*(Resist+.7)-Volts(4E)*.7)/R2
1340 Pow (7)=(Volts(46)-Volts(7)) (Volts(7)*(Resist+.2)-Volts(46)*.2)/R2
1341 Pow (16) =(Volts(48)-Volts(16))*(Volts(16)*(Resist+.4)-Volts(48)*.4)/R2
1342 Pow (17) \(=(\) Volts (48)-Volts(17)) *(Volts (17) * (Resist+.4)-Volts(48) . 4 )/R2
1343 Pow (26)=(Volts(49)-Volts(26))*(Volts(26)*(Resist+.2)-Volts(49)*.2)/R2
1344 FOR I=1 TO 45
1346 PRINT "BLOCK \# ":I," POWER = ":POW(I)," WATTS"
1347 WAIT . 5
1348 NEXT I
1350 Ptot=0
1351 FOR I=1 TO 15
1352 Ptot=Ptot+Pcw(I)
135 S NEXT I
1354 FOR I=31 TO 45
1355 Ptot=Ptot+Pow(I)
1356 NEXT I
1357 Pavgsides=Ptot/30
1353 PRINT " "
1359 FRINT "AUERAGE FOWER SIDES = ";Pavgsides," WATTS"
1350 PRINT " "
1361 Ptot=0
1352 FOR I=16 TO 30
13Eう Ptot=Ptot+Pow(I)
1364 NEXT I
1365 Pavgeenter=Ptot/15
1357 PRINT "AUERAGE POWER CENTER = "; Pavgcenter," WATTS"
1358 PRINT " "
\(1 \Xi 70\) PRINT" "
1371 FOR \(I=1\) TO 15
1う72 Perdif=A日S((Pavgsides-Pow(I))/Pavgsides)*100
1373 PRINT "HEATEF \#";I," PERCENT DEUIATION "iPerdif
1374 WAIT.S
1375 NEXT I
1376 FOF I=16 TO 30
1377 Perdif=ABS((Pavgcenter-Pow(I))/Pavgcenter)*100
1378 PRINT "HEATER *":I," PERCENT DEUIATION ";Ferdsf
1379 WAIT. 5
1380 NEYT I
1581 FOR I=31 TO 45
1382 Perdif=ABS((Pavgsides-Pow(I))/Pavgsides)*100
1383 PRINT "HEATER *"I." PERCENT DEUIATION ";Perdıf
1384 WAIT . 5
1385 NEXT I
1386 END

\section*{APPENDIX H}

\section*{NONUNIFORM DATA REDUCTION PROGRAM}

```

107
108
109 IFOR I=1 TO 45
110 IPRINT "HEATER %":I," TEMPERATURE IN DEG. C =";T(I)
111 INEXT I
112 IOUTPUT OPath3;T(*)
115 !PRINT * "
116 !PRINT * BATH TEMPERATURES (TOP TO BOTTOM)*
117 !PRINT " "
118 OUTPUT 709:"CONFMEAS DCU,317-319,USE 0"
119 FOR I=57 TO 59
120 ENTER 709;Volts(I)
121 T(I)=.0006797+(25825.1328*Volts(I))-(607789.2467*(Volts(I)*Volts(I)))-(219
52034.3354*(Volts(I)^3))+(8370810996.1874*(Volts(I)^4))+.036
122 IPRINT "TEMP. DEG. C "iT(I)
124 NEXT I
125 T(22)=25
126 T(29)=25
133 !PRINT "INPUT AMBIENT TEMPERATURE"
134 Tamb=(T(57)+T(58)+T(59))/3
135 PRINTER IS 701
135 PRINT *
137 PRINT DATE$(TIMEDATE)
138 PRINT "DATA REDUCTION OUTPUT"
139 PRINT " "
140 PRINT "POWER LEUELS (WATTS) :",Power1,Power?
141 PRINT
142 PRINT "SHROUD POSITION (mm) :",Spaces
143 PRINT
144 PRINT "AMBIENT TEMPERATURE (C) :",Tamb
145 PRINT
146 PRINT
147 ।
148 IASSIGN BFath TO Filenames
149 IENTER BPath;T(*).
150 1
151 G=9.81
152 Kog=.1421
153 Delx=.005731
154 As=.0239*.0078
155 Per=2*.0239+2*.0078
150 Lbar=As/Per
157 AS="Qcond"
159 B$="X/L"
159 C$="NOT"
160 DS="LOG(Nux)"
16: ES="LOG(Grx*)"
162 FS="DELT"
163 65="Hx"
164 HS="Nux"
165 15="Grx*"
166 J$="Temp"
168 PRINTER IS CRT
169 !!1!!1!!!1111!!11!!!1!!!!!!!!!!11!!!!1!!!!!!1
170 !
ENTER CONDUCTION LOSSES
11!111!!!!!!!!!!!!!!!!!!!1!11!!!1!1!!1!!!!!!
PRINT "INPUT SIDE COLUMN CONDUCTION LOSSES AS COMPUTED FROM ELLPACK"
INPUT Qcond
!!!!!!1!!!!111111!!!111!!!!!!1111!!!!!!!!!!1
CREATE BDAT Filenames,45
ASSIGN OPath3 TO Filenames
PRINTER IS 701

```

, \(4 X, A A A, 3 X, A A A A, 2 X, A A A A ": A \$, B \$, C \$, D \$, E \$, F \$, G \$, H \$, I \$, J \$\)
184 Qconv=Power1-Qcond
185 Qflux \(=\) Qconv/As
186 Delt=T(I)-Tamb
187 Tfalm=273.15+(T(I)+Tamb)/2
188 Beta=(-7.944858E-8*(Tfilm^2))+(5.7356479E-5*Tfilm)-.0097810563
189 Spvol=(4.69699E-9*(Tfilm^2))+(-2.53745E-6*Tfilm)+.001341903
190 Dynvisc*(3.2348511E-7*(Tfilm^2))+(-.00021474487*Tfilm)+.036i66792
191 Kinvisc=Spvol*Oynvisc
\(192 K f=\left(1.418181818 E-3 * T f_{i} 1 \mathrm{~m}\right)+.1866\)
\(193 \operatorname{Pr}=(4.65706 E-3\) *(Tfilm^2))+(-2.922094*Tfilm)+463.3319
194 Thetal=Power1/(.0220*Kf)
195 Noti(I)=Delt/Thetal
198 Nd=Ndt1(I)
197 Temp=T(I)
198 Theta=Qflux*Lbar/Kf
199 Ndt(I)=Delt/Theta
\(200 \mathrm{Hx}_{\mathrm{L}}=\) Qflux/Delt
201 Grm=(G*Beta*Qflux*(Lbar)^4)/(Kf*Kinvisc^2)
202 Nux=Hx*Lbar/Kf
\(203 \operatorname{Lgr}(I)=L G T(G r m)\)
204 Lnu(I) 2 LGT(Nux)
205 Lnn=Lnu(I)
206 Lg=Lgri)
208 Xtol=(31.75-(6.985+(I-16)+1.270))/31.75
209 FRINT USING \(1 \times, 0.0000,2 X, 0.000,1 X, 0.000,2 X, 0.000,5 X, 0.000,4 X, D D . D O D, 2 X, 00\)

210 NEXT I
211 PRINTER IS CRT
217 1!!!!!!!!11!!1!11!!!!!!!!!!!!!!!!!!!!!!!!!!!
2181 ENTER CONDUCTION LOSSES
219 !!!!!!!!1!!!1!!!!!!!!!!!!!1!1!!!!!!!!!!!!!!!!!
220 PRINT "INPUT CENTER COLUMN CONDUCTION LOSSES AS COMPUTED FROM ELLFACK"
221 INPUT Qcond
222 !!111!11!!!1!!!!1!1!1!!!!11!!1!!11!!!1!!!!!
225 PRINTER IS 701
I2E FOR I=16 TO 30
227 PRINT"*
2こる PRINT " "
229 PRINT * SURFACE \#", I
230 PRINT " "

\(, 4 X, A A A, ~ З X, A A A A, 2 X, A A A A^{\prime \prime}: A \$, B \$, C \$, D \$, E \$, F \$, 6 \$, H \$, I \$, J \$\)
232 Qconv=Power2-Qcond
233 Oflux=Qconv/As
234 Delt=T(I)-Tamb
235 Tfilm=273.15+(T(I)+Tamb)/2
236 Beta=(-7.944858E-8*(Tfilm^2))+(5.7356479E-5*Tfilm)-.0097810563
237 Sprol=(4.69699E-g.(Tf11m^2) \(1+\left(-2.53745 E-6+T f_{1} 1 \mathrm{~m}\right)+.001341903\)
238 Dynvisc=(3.2348511E-7*(Tfilm^2))+(-.00021474487*Tfilm)+.036166792
239 Kınvisc=5ovol*Dynvisc
\(240 \quad \mathrm{Kf}=\left(1.418181818 E-3+T f_{1} 1 \mathrm{~m}\right)+.1856\)
\(241 \mathrm{Pr}=\left(4.65706 E-3 *\left(T f_{1} 1 \mathrm{~m}^{\wedge} 2\right)\right)+\left(-2.922094\right.\) * \(\left.\mathrm{Tf}_{1} 1 \mathrm{~m}\right)+463.3319\)
242 Thetal=Power2/(.0220.Kf)
```

243 Ndt1(I)=Delt/Thetal
24 Nd=Ndtl(I)
245 Temp=T(I)
246 Theta=Qflux*Lbar/Kf
247 Ndt(I)=Delt/Theta
2 4 8 ~ H x = O f l u x / D e l t ~
249 Grm=(G*Beta*Qflux*(Lbar)^4)/(Kf*Kinvisc^2)
250 Nux=Hx*Lbar/Kf
252 Lgr(I)=LGT(Grm)
253 Lnu(I)=LGT(Nux)
254 Lnn=Lnu(I)
255 Lo*Lgr(I)
250 X{01=(31.75-(5.985+(I-16)*1.270))/31.75

```

```

DD.D.1X ,OD.DOD,ODODO.D,IX,DD.DO";Qcond,Xtol,Nd,Lnn,Lg,Delt,Hx,Nux,Grm,Temp
258 NEXT I
259 PRINTER IS CRT
250 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1!!!!!!!!!!!!!!!!!
261 ! ENTER CONDUCTION LOSSES !
262 11!1!!!!!!!!!!!!!1!!!!!!!!1!!1!!!!1!!!!!!!!!!
263 PRINT "INPUT SIDE COLUMN CONDUCTION LOSSES AS COMPUTED FROM ELLPACK*
264 INPUT Qcond
265 !!
255 PRINTER IS 701
267 FOR I=31 TO 45
268 PRINT " *
269 PRINT " .
270 PRINT " SURFACE \#",I
271 PRINT * *
272 PRINT USING " 2X,AAAAA, 3X, AAA, 3X, AAA , ЗX, AAAAAAAAA, 2X, AAAAAAAAAA, ЗX, AAAA , 4X,AA

,4X,AAA, JX,AAAA , IX,AAAA";A$,B$,C$,O$,E$,F$, %$,H$, I$, J$\$
273 Qconv=Power1-Qcond
274 Oflux=Oconv/As
275 Delt=T(I)-Tamb
275 Tfilm=273.15+(T(I)+Tamb)/2
277 Beta=(-7.944858E-8*(Tfilm`2))+(5.7356479E-5*Tf_1m)-.0097810563
275 Spvol=(4.69699E-9*(Tfilm^2))+(-2.5j745E-5*Tfilm)+.001341903
279 Dynv1sc=(3.2348511E-7*(Tf11m^2))+i-.00021474487*Tf1lm)+.036165752
2g0 kinvisc=5pvol*Oynvzsc
Z81 Kf=(1.418181818E-3+Tf11m)+.1856
262 Pr=(4.65706E-3*(Tf1Im^2))+(-2.922094*Tfilm)+463.3319
28j Thetal=Power1/(.0220*Kf)
284 Ndtlil)=Delt/Thetal
285 Nd=Natl(I)
286 Temp=T(I)
287 Theta=Qflux*Lbar/Kf
288 Ndt(I)=Delt/Theta
289 Hx=Qflux/Delt
290 Grm=(G*Beta*Oflux*(Lbar)^4)/(Kf*Kinvasc^2)
291 Nu^=H%*Lbar/K'f
292 Lgr(I)=LGT(Grm)
29う Lnu(I)=LGT(Nux)
294 Lnn=Lnu(I)
295 Lg=Lgr(I)
297 Xtol=(31.75-(6.985+(I-15)*1.270))/31.75
298 PRINT USING "IX,D.DDDD,2X,D.DDD,IX,D.DOD,2X,D.ODD,5X,D.DDD,4X,DD.ODO,2X,DD
``````
259 NEXT I
300 OUTPUT OPath3;T(*),Ndt1(*),Ndt(*),Lnu(*),Lor(*)
301 PFINTER 15 CRT
302 END
```

LIST OF REFERENCES

1. Bergles, A. E., and Bar-Cohen, A., Direct Liquid Cooling of Microelectronic Components, Advances in Thermal Modeling of Electronic Components and Systems, Vol. 2, Bar-Cohen, A. and Kraus, A. D., Eds., ASME Press, 1990.
2. Nakayama, A., Thermal Management of Electronic Equipment: A Review of Technology and Research Topics, Advances in Thermal Modeling of Electronic Components and Systems, Vol. 1, Hemisphere , 1988.
3. Incropera, F. P., "Convection Heat Transfer in Electronic Equipment Cooling", ASME J. Heat Transfer 110, 1097, 1988.
4. Incropera, F. P., and Dewitt, D. P., Introduction to Heat Transfer, Wiley, New York, 1985.
5. Sathe, S. B., and Joshi, Y., "Natural Convection Arising from a Heat Generating Substrate-Mounted Protrusion in a Liquid-Filled TwoDimensional Enclosure", submitted for publication.
6. Gaiser, A. O., Natural Convection Liquid Immersion Cooling of High Density Columns of Discrete Heat Sources in a Vertical Channel, M.E. Thesis, Naval Postgraduate School, Monterey, CA, June 1989.
7. Joshi, Y., Willson T., and Hazard, S. J., III, "An Experimental Study of Natural Convection Cooling of an Array of Heated Protrusions in a Vertical Channel in Water", Journal of Electronic Packaging, March 1989.
8. Park, K. A., and Bergles, A. E., "Natural Convection Heat Transfer Characteristics of Simulated Microelectronic Chips", Transactions of the ASME 90, 109, February 1987.
9. Bar-Cohen A., and Schweitzer, H., "Convective Immersion Cooling of Parallel Vertical Plates", IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 8, 3, September 1985.
10. Milanez, L. F., and Bergles, A. E., "Studies on Natural Convection Heat Transfer from Thermal Sources on a Vertical Surface", Proceedings of the Eighth International Heat Transfer Conference, Vol. 3, 1347, 1986.
11. Jaluria, Y., "Interaction of Natural Convection Wakes Arising From Thermal Sources on a Vertical Surface", Journal of Heat Transfer 107, 883 November 1985.
12. Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Hemisphere/McGraw-Hill 1980.
13. Halcrest Company, An Introduction to Thermochromic Liquid Crystal Products, 1989.
14. Paje, Rufino A., Experiments on Liquid Immersion Natural Convection cooling of Leadless Chip Carriers Mounted on Ceramic Substrate, M.E. Thesis, Naval Postgraduate School, Monterey, CA, September 1989.

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria,VA 22304-6145
2. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5002
3. Mr. Howard Stevens 1
Head, Electrical Research Center
David Taylor Research Center
Annapolis, MD 21402
4. Superintendent 1
Naval Postgraduate School
Attn: Professor A. J. Healey, Code ME/Hy Department of Mechanical Engineering Monterey, CA 93943-5004
5. Superintendent 3
Naval Postgraduate School
Attn: Professor Y. Joshi, Code ME/Ji Department of Mechanical Engineering Monterey, CA 93943-5004
6. Superintendent 1
Naval Postgraduate School
Attn: Professor M. D. Kelleher, Code ME/Kk Department of Mechanical Engineering Monterey, CA 93943-5004
7. Superintendent 1
Naval Postgraduate School
Attn: Professor A. D. Kraus, Code EE/Ks Department of Electrical Engineering Monterey, CA 93943-5004
8. Superintendent 1
Naval Postgraduate School
Attn: Professor S. Sathe ME/St
Department of Mechanical Engineering Monterey, CA 93943-5004
9. Mr. Duane Embree 1
Naval Weapons Support Center
Code 6042
Crane, IN 47522
10. Mr. Alan Bosler 1
Naval Weapons Support Center
Code 6051
Crane, IN 47522
11. Superintendent 1
Naval Postgraduate School
Attn: Curricular Officer, Code 34
Monterey, CA 93943-5004
12. Mr. Joseph Cipriano 1
Executive Director
Weapons and Combat Systems Directorate Naval Sea Systems Command
Washington, D.C. 200362-5101
13. Lt. Larry O. Haukenes 2
Route 1, Box 14
Roberts, WI 54023
